- Beskok A., Karniadakis G.E. (1999) Report: A model for flows in channels, pipes, and ducts at micro and nano scales, Nanoscale Microscale Therm. Eng. 3, 1, 43–77. doi: 10.1080/108939599199864. [CrossRef] [Google Scholar]
- Birol F. (2010) World energy outlook 2010, International Energy Agency, Washington, DC. [Google Scholar]
- Bonnet E., Bour O., Odling N.E., Davy P., Main I., Cowie P., Berkowitz B. (2001) Scaling of fracture systems in geological media, Rev. Geophys. 39, 3, 347–383. doi: 10.1029/1999rg000074. [Google Scholar]
- Burdine N.T. (1953) Relative permeability calculations from pore size distribution data, J. Pet. Technol. 5, 3, 71–78. doi: 10.2118/225-g. [CrossRef] [Google Scholar]
- Cao B.Y., Sun J., Chen M., Zeng Y. (2009) Molecular momentum transport at fluid-solid interfaces in MEMS/NEMS: A review, Int. J. Mol. Sci. 10, 11, 4638. doi: 10.3390/ijms10114638. [Google Scholar]
- Chima A., Geiger S. (2012) An analytical equation to predict gas/water relative permeability curves in fractures, in: The Annual Meeting for the SPE Latin America and Caribbean Petroleum Engineering Conference, 16–18 April, Mexico City. [Google Scholar]
- Darabi H., Ettehad A., Javadpour F., Sepehrnoorl K. (2012) Gas flow in ultra-tight shale strata, J. Fluid Mech. 710, 12, 641–658. doi: 10.1017/jfm.2012.424. [Google Scholar]
- Ertekin T., King G.R., Schwerer F.C. (1986) Dynamic gas slippage: A unique dual-mechanism approach to the flow of gas in tight formations, SPE Form. Eval. 1, 1, 43–52. doi: 10.2118/12045-pa. [CrossRef] [Google Scholar]
- Firouzi M., Rupp E.C., Liu C.W., Wilcox J. (2014) Molecular simulation and experimental characterization of the nanoporous structures of coal and gas shale, Int. J. Coal Geol. 121, 1, 123–128. doi: 10.1016/j.coal.2013.11.003. [Google Scholar]
- Gong B., Liu X., Qin G. (2014) A Lattice Boltzmann model for multi-component vapor-liquid two phase flow, Petrol. Explor. Dev. 41, 5, 695–702. doi: 10.11698/PED.2014.05.17. [CrossRef] [Google Scholar]
- Javadpour F. (2009) Nanopores and apparent permeability of gas flow in mudrocks (Shales and Siltstone), J. Can. Pet. Technol. 48, 8, 16–21. doi: 10.2118/09-08-16-da. [CrossRef] [Google Scholar]
- Javadpour F., Fisher D., Unsworth M. (2007) Nanoscale gas flow in shale gas sediments, J. Can. Pet. Technol. 46, 10, 55–61. doi: 10.2118/07-10-06. [Google Scholar]
- Katz A.J., Thompson A.H. (1985) Fractal sandstone pores: Implications for conductivity and pore formation, Phys. Rev. Lett. 54, 12, 1325–1328. doi: 10.1103/physrevlett.54.1325. [CrossRef] [PubMed] [Google Scholar]
- Kim T.W., Tokunaga T.K., Shuman D.B., Stephen R.S., Matt N., Lanzirotti A. (2012) Thickness measurements of nanoscale brine films on silica surfaces under geologic CO2 sequestration conditions using synchrotron X-ray fluorescence, Water Resour. Res. 48, 9. doi: 10.1029/2012wr012200. [Google Scholar]
- Klinkenberg L.J. (1941) The permeability of porous media to liquids and gases, SOCAR Proc. 2, 2, 200–213. doi: 10.5510/ogp20120200114. [Google Scholar]
- Knudsen M. (1934) Die Gesetze der Molekularströmung und der inneren Reibungsströmung der Gase durch Röhren, Ann. Phys. 333, 1, 75–130. doi: 10.1002/andp.19093330106. [Google Scholar]
- Li Y., Li X., Teng S., Xu D. (2014) Improved models to predict gas–water relative permeability in fractures and porous media, J. Nat. Gas Sci. Eng. 19, 7, 190–201. doi: 10.1016/j.jngse.2014.05.006. [Google Scholar]
- Liu Q., Shen P., Yang P. (2002) Pore scale network modelling of gas slippage in tight porous media, Contemp. Math. 295, 367–375. doi: 10.1090/conm/295/05027. [CrossRef] [Google Scholar]
- Majumdar A.A., Bhushan B. (1990) Role of fractal geometry in roughness characterization and contact mechanics of surfaces, ASME J. Tribol. 112, 2, 205–216. doi: 10.1115/1.2920243. [Google Scholar]
- Marle C. (1981) Multiphase flow in porous media, Éditions Technip, France. [Google Scholar]
- Sampath K., Keighim C.W. (1982) Factors affecting gas slippage in tight sandstones of cretaceous age in the Uinta Basin, J. Pet. Technol. 34, 11, 2715–2720. doi: 10.2118/9872-pa. [CrossRef] [Google Scholar]
- Schaaf S.A., Chambré P.L. (1961) Flow of rarefied gases, Princeton University Press, Princeton. [Google Scholar]
- Singh H., Javadpour F., Ettehadtavakkol A., Darabi H. (2014) Nonempirical Apparent Permeability of Shale, SPE Reserv. Evalu. Eng. 17, 3, 414–424. doi: 10.2118/170243-pa. [CrossRef] [Google Scholar]
- Tocci G., Joly L., Michaelides A. (2016) Friction of water on graphene and hexagonal boron nitride from ab initio methods: Very different slippage despite very similar interface structures, Nano Lett. 14, 12, 6872–6877. doi: 10.1021/nl502837d. [Google Scholar]
- Wu L. (2008) A slip model for rarefied gas flows at arbitrary Knudsen number, Appl. Phys. Lett. 93, 25, 253103. doi: 10.1063/1.3052923. [Google Scholar]
- Wu K., Li X., Wang C., Yu W., Guo C., Ji D., Ren G., Chen Z. (2014) Apparent permeability for gas flow in shale reservoirs coupling effects of gas diffusion and desorption, in: The Annual Meeting for the Unconventional Resources Technology Conference, 25–27 August, Denver. [Google Scholar]
- Wu K., Li X., Chen Z. (2015a) The mechanism and mathematical model for the adsorbed gas surface diffusion in nanopores of shale gas reservoirs, Sci. Sin. Technol. 45, 5, 525–540. doi: 10.1360/n092014-00263. [CrossRef] [Google Scholar]
- Wu K., Li X., Chen Z. (2015b) A model for gas transport through nanopores of shale gas reservoirs, Acta Petrol. Sin. 36, 7, 837–848. [Google Scholar]
- Wu K., Chen Z., Li X. (2015c) Real gas transport through nanopores of varying cross-section type and shape in shale gas reservoirs, Chem. Eng. J. 281, 813–825. doi: 10.2118/175453-ms. [Google Scholar]
- Wu K., Li X., Wang C., Chen Z., Yu W. (2015d) A model for gas transport in microfractures of shale and tight gas reservoirs, AIChE J. 61, 6, 2079–2088. doi: 10.1002/aic.14791. [Google Scholar]
- Wu K., Li X., Wang C., Yu W., Chen Z. (2015e) Model for surface diffusion of adsorbed gas in nanopores of shale gas reservoirs, Ind. Eng. Chem. Res. 54, 12, 3225–3236. doi: 10.4043/25662-ms. [Google Scholar]
- Wu K., Li X., Chen Z. (2016a) Real gas transport through nanopores of shale gas reservoirs, Sci. Sin. Technol. 46, 1, 68–78. doi: 10.2118/180086-ms. [CrossRef] [Google Scholar]
- Wu K., Chen Z., Li X., Guo C., Wei M. (2016b) A model for multiple transport mechanisms through nanopores of shale gas reservoirs with real gas effect–adsorption-mechanic coupling, Int. J. Heat Mass Transfer 93, 408–426. doi: 10.2118/173201-ms. [CrossRef] [Google Scholar]
- Wu K., Chen Z., Li J., Li X., Xu J., Dong X. (2017) Wettability effect on nanoconfined water flow, Proc. Nat. Acad. Sci. USA 114, 13, 3358–3363. doi: 10.1016/j.nantod.2017.05.001. [CrossRef] [Google Scholar]
- Xu P., Yu B. (2008) Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry, Adv. Water Res. 31, 1, 74–81. doi: 10.1016/j.advwatres.2007.06.003. [CrossRef] [Google Scholar]
- Xu P., Qiu S., Yu B. (2013) Prediction of relative permeability in unsaturated porous media with a fractal approach, Int. J. Heat Mass Transfer 64, 3, 829–837. doi: 10.1021/ef3013322. [CrossRef] [Google Scholar]
- Yang S., Wei J. (2015) Reservoir physics, Petroleum Industry Press, Beijing. [Google Scholar]
- Yu B., Cheng P. (2002) A fractal permeability model for bi-dispersed porous media, Int. J. Heat Mass Transfer 45, 14, 2983–2993. doi: 10.1016/s0017-9310(02)00014-5. [CrossRef] [Google Scholar]
- Yu B., Li J. (2011) Some fractal characters of porous media, Fractals 9, 3, 365–372. doi: 10.1142/s0218348x01000804. [Google Scholar]
- Yu B., Liu W. (2004) Fractal analysis of permeabilities for porous media, AIChE J. 50, 1, 46–57. doi: 10.1002/aic.10004. [Google Scholar]
- Zhang H. (2016) A scanning electron microscopic study of unconventional oil and gas reservoir, Geology Publishing House, Beijing. [Google Scholar]
- Zhang X., Wu C., Liu S. (2017) Characteristic analysis and fractal model of the gas-water relative permeability of coal under different confining pressures, J. Pet. Sci. Eng. 159, 488–496. doi: 10.1016/j.petrol.2017.09.057. [Google Scholar]
Open Access
Issue |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
|
|
---|---|---|
Article Number | 2 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.2516/ogst/2019068 | |
Published online | 21 January 2020 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.