Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Article Number 3
Number of page(s) 11
DOI https://doi.org/10.2516/ogst/2019064
Published online 21 January 2020
  • Li C.X., Zhu H.R., Yang F., Liu H.Y., Wang F., Sun G.Y., Yao B. (2019) Effect of asphaltene polarity on wax precipitation and deposition characteristics of waxy oils, Energy Fuels 33, 8, 7225–7233. [Google Scholar]
  • Cheng Q.L., Gan Y.F., Su W.K., Liu Y., Sun W., Xu Y. (2017) Research on exergy flow composition and exergy loss mechanisms for waxy crude oil pipeline transport processes, Energies 10, 12, 20. [Google Scholar]
  • Wang J., Zhou F.J., Zhang L.T., Huang Y.X., Yao E.D., Zhang L., Wang F., Fan F. (2019) Experimental study of wax deposition pattern concerning deep condensate gas in Bozi block of Tarim Oilfield and its application, Thermochim. Acta 671, 1–9. [Google Scholar]
  • Zhu H.R., Li C.X., Yang F., Liu H.Y., Liu D.H., Sun G.Y., Yao B., Liu G., Zhao Y.S. (2018) Effect of thermal treatment temperature on the flowability and wax deposition characteristics of changqing waxy crude oil, Energy Fuels 32, 10, 10605–10615. [Google Scholar]
  • El-Dalatony M.M., Jeon B.H., Salama E., Eraky M., Kim W.B., Wang J., Ahn T. (2019) Occurrence and characterization of paraffin wax formed in developing wells and pipelines, Energies 12, 6, 23. [Google Scholar]
  • Van der Geest C., Guersoni V.C.B., Merino-Garcia D., Bannwart A.C. (2018) Wax deposition experiment with highly paraffinic crude oil in laminar single-phase flow unpredictable by molecular diffusion mechanism, Energy Fuels 32, 3, 3406–3419. [Google Scholar]
  • Chi Y.D., Daraboina N., Sarica C. (2017) Effect of the flow field on the wax deposition and performance of wax inhibitors: Cold finger and flow loop testing, Energy Fuels 31, 5, 4915–4924. [Google Scholar]
  • Hamouda A.A., Viken B.K. (1993) Wax deposition mechanism under high-pressure and in presence of light hydrocarbons, SPE International Symposium on Oilfield Chemistry, 2–5 March, New Orleans, Louisiana, USA. [Google Scholar]
  • Brown T., Niesen V. (1993) Measurement and prediction of the kinetics of paraffin deposition, SPE Annual Technical Conference AND Exhibition, 3–6 October, Houston, Texas, USA. [Google Scholar]
  • Burger E.D., Perkins T.K., Striegler J.H. (1981) Studies of wax deposition in the trans alaska pipeline, J. Pet. Technol. 33, 6, 1075–1086. [CrossRef] [Google Scholar]
  • Singh P., Venkatesan R., Fogler H.S., Nagarajan N. (2000) Formation and aging of incipient thin film wax-oil gels, Aiche J. 46, 5, 1059–1074. [Google Scholar]
  • Hernandez O., Hensley H., Sarica C., Brill J., Volk M., Delle-Case E. (2003) Improvements in single-phase paraffin deposition modeling, SPE Annual Technical Conference and Exhibition, 5–8 October, Denver, Colorado, USA. [Google Scholar]
  • Zheng S., Saidoun M., Palermo T., Mateen K., Fogler H.S. (2017) Wax deposition modeling with considerations of non-Newtonian characteristics: Application on field-scale pipeline, Energy Fuels 31, 5, 5011–5023. [Google Scholar]
  • Wang W.D., Huang Q.Y., Wang C.H., Li S., Qu W.X., Zhao J.D., He M.Q. (2015) Effect of operating conditions on wax deposition in a laboratory flow loop characterized with DSC technique, J. Therm. Anal. Calorim. 119, 1, 471–485. [Google Scholar]
  • Henaut I., Betro B., Vinay G. (2019) Differential Scanning Calorimetry contribution to a better understanding of the aging of gelled waxy crude oils, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 74, 16. [CrossRef] [Google Scholar]
  • Ansaroudi H.R.J., Vafaie-Sefti M., Masoudi S., Behbahani T.J., Jafari H. (2013) Study of the morphology of wax crystals in the presence of ethylene-co-vinyl acetate copolymer, Pet. Sci. Technol. 31, 6, 643–651. [Google Scholar]
  • Hausen H. (1943) Darstellung des Warmeuberganges in Rohren durch verallgemeinerte Potenzbeziehungen, Z. VDI Beih. Verfahrenstech 4, 91–98. [Google Scholar]
  • Sieder E.N., Tate G.E. (1936) Heat transfer and pressure drop of liquids in tubes, Ind. Eng. Chem. 28, 12, 1429–1435. [Google Scholar]
  • Singh P., Venkatesan R., Fogler H.S., Nagarajan N.R. (2001) Morphological evolution of thick wax deposits during aging, Aiche J. 47, 1, 6–18. [Google Scholar]
  • Bergman T.L., Incropera F.P., DeWitt D.P., Lavine A.S. (2011) Fundamentals of heat and mass transfer, 3rd ed., John Wiley & Sons, USA, pp. 120–132. [Google Scholar]
  • Cussler E.L., Hughes S.E., Iii W.J.W., Aris R. (1988) Barrier membranes, J. Membr. Sci. 38, 2, 161–174. doi: 10.1016/S0376-7388(00)80877-7. [CrossRef] [Google Scholar]
  • Lund H. (1998) Investigation of paraffin deposition during single-phase liquid flow in pipelines, Doctoral Thesis, University of Tulsa, USA. [Google Scholar]
  • Zhang X., Queimada A., Szczepanski R., Moorwood T. (2014) Modelling the shearing effect of flowing fluid and wax ageing on wax deposition in pipelines, Offshore Technology Conference, 25–28 March, Kuala Lumpur, Malaysia. [Google Scholar]
  • Yang X. (2006) Oil pipeline design and management, 2nd ed., China University of Petroleum Press, Dongying, China, pp. 92–93. [Google Scholar]
  • Wang Z. (2014) Study on gelling deposition behavior and control of oil-water two-phase system in cooling gathering & transportation, Northeast Petroleum University, Daqing, China. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.