Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Article Number 77
Number of page(s) 13
Published online 25 October 2019
  • Ben Gharbia I., Flauraud E. (2019) Study of compositional multiphase flow formulation using complementarity conditions, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 74, 43. [CrossRef] [Google Scholar]
  • Chien M.C., Lee S.T. (1983) A new equilibrium coefficient correlation method for compositional simulators, SPE-12243-MS, Reservoir Simulation Symposium, November 15–18, San Francisco, CA. [Google Scholar]
  • Dalton B.J. (1970) Two-phase equilibria of analytical binary solutions near the critical point, U.S. Bureau of Mines, Information Circular 8486. [Google Scholar]
  • Dalton B.J., Barieau R.E. (1968) Equations for calculating various thermodynamic functions of a two-component system from an empirical equation of state, including liquid-vapor equilibria data, Technical Report BM-RI-7076, U.S. Bureau of Mines, Amarillo, TX. [Google Scholar]
  • Fleming P.D. III, Vinatieri J.E. (1979) Quantitative interpretation of phase volume behavior of multicomponent systems near critical points, AIChE J. 25, 493–502. [Google Scholar]
  • Gaganis V. (2018) Rapid phase stability calculations in fluid flow simulation using simple discriminating functions, Comput. Chem. Eng. 108, 112–127. [Google Scholar]
  • Gaganis V., Varotsis N. (2014) An integrated approach for rapid phase behavior calculations in compositional modeling, J. Petrol. Sci. Eng. 118, 74–87. [CrossRef] [Google Scholar]
  • He C., Mu L., Xu A., Zhao L., He J., Zhang A., Shan F., Luo E. (2019) Phase behavior and miscible mechanism in the displacement of crude oil with associated sour gas, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 74, 54. [CrossRef] [Google Scholar]
  • Hendriks E.M. (1988) Reduction theorem for phase equilibrium problems, Ind. Eng. Chem. Res. 27, 1728–1732. [Google Scholar]
  • Hendriks E.M., van Bergen A.R.D. (1992) Application of a reduction method to phase equilibria calculations, Fluid Phase Equilib. 74, 17–34. [Google Scholar]
  • Jensen F., Michelsen M.L. (1990) Calculation of first contact and multiple contact minimum miscibility pressure, In Situ 14, 1–17. [Google Scholar]
  • Kaliappan C.S., Rowe A.M. (1971) Calculation of pressure-temperature phase envelopes of multicomponent systems, Soc. Petrol. Eng. J. 11, 243–251. [CrossRef] [Google Scholar]
  • Kazemi H., Vestal C.R., Shank D.G. (1978) An efficient multicomponent numerical simulator, Soc. Petr. Eng. J. 18, 355–368. [CrossRef] [Google Scholar]
  • Landau L., Lifshitz E. (1959) Fluid mechanics, Pergamon, Section 64. [Google Scholar]
  • Levelt Sengers J.M.H., Morrison G., Chang R.F. (1983) Critical behavior in fluids and fluid mixtures, Fluid Phase Equilib. 14, 19–44. [Google Scholar]
  • Luo E., Fan Z., Hu Y., Zhao L., Wang J. (2019) An evaluation on mechanisms of miscibility development in acid gas injection for volatile oil reservoirs, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 74, 59. [Google Scholar]
  • Mehra R.K., Heidemann R.A., Aziz K. (1982) Computation of multiphase equilibrium for compositional simulation, Soc. Petrol. Eng. J 22, 61–68. [CrossRef] [Google Scholar]
  • Michelsen M.L. (1982a) The isothermal flash problem. Part I. Stability, Fluid Phase Equilib. 9, 1–19. [Google Scholar]
  • Michelsen M.L. (1982b) The isothermal flash problem. Part II. Phase split calculation, Fluid Phase Equilib. 9, 21–40. [Google Scholar]
  • Michelsen M.L. (1984) Calculation of critical points and phase boundaries in the critical region, Fluid Phase Equilib. 16, 57–76. [Google Scholar]
  • Michelsen M.L. (1986) Simplified flash calculations for cubic equations of state, Ind. Eng. Chem. Proc. Des. Dev. 25, 84–188. [CrossRef] [Google Scholar]
  • Montel F. (1998) New tools for oil and gas reservoir fluid management, Revue de l’Institut Français du Pétrole 53, 9–11. [Google Scholar]
  • Nghiem L.X., Li Y.K. (1990) Approximate flash calculations for equation-of-state compositional models, Soc. Petrol. Eng. Res. Eng. 5, 107–114. [Google Scholar]
  • Nichita D.V. (2006) a reduction method for phase equilibrium calculation with cubic equations of state, Braz. J. Chem. Eng 23, 427–434. [CrossRef] [Google Scholar]
  • Nichita D.V. (2008) Phase envelope construction for mixtures with many components, Energy Fuels 22, 488–495. [Google Scholar]
  • Nichita D.V., Graciaa A. (2011) A new reduction method for phase equilibrium calculations, Fluid Phase Equilib. 302, 226–233. [Google Scholar]
  • Nichita D.V., Leibovici C.F. (2006) An analytical-component delumping procedure for equations of state with non-zero binary interaction consistent pseudoparameters, Fluid Phase Equilib. 245, 71–82. [Google Scholar]
  • Nichita D.V., Minescu F. (2004) Efficient phase equilibrium calculations in a reduced flash context, Can. J. Chem. Eng. 82, 1225–1238. [Google Scholar]
  • Nichita D.V., Petitfrere M. (2013) Phase stability analysis using a reduction method, Fluid Phase Equilib. 358, 27–39. [Google Scholar]
  • Nichita D.V., Broseta D., de Hemptinne J.-C., Lachet V. (2007a) Efficient phase equilibrium calculation for compositional simulation: the direct reduced flash, Petrol. Sci. Technol. 25, 315–342. [CrossRef] [Google Scholar]
  • Nichita D.V., Broseta D., Montel F. (2007b) Calculation of convergence pressure/temperature and stability test limit loci of mixtures with cubic equations of state, Fluid Phase Equilib. 261, 176–184. [Google Scholar]
  • Peng D.Y., Robinson D.B. (1976) A new two-constant equation of state, Ind. Eng. Chem. Fundam. 15, 59–64. [CrossRef] [Google Scholar]
  • Petitfrere M., Nichita D.V. (2015) Multiphase equilibrium calculations using a reduction method, Fluid Phase Equilib. 401, 110–126. [Google Scholar]
  • Rannou G., Voskov D., Tchelepi H. (2013) Tie-line-based K-value method for compositional simulation, SPE J. 18, 1112–1122. [CrossRef] [Google Scholar]
  • Robinson D.B., Peng D.Y. (1978) The characterization of the heptanes and heavier fractions for the GPA Peng-Robinson programs, Research Report, Gas Processors Association, Tulsa, Okla, RR-28. [Google Scholar]
  • Rowe A.M. (1967) The critical composition method – a new convergence pressure method, Soc. Petrol. Eng. J. 7, 54–60. [CrossRef] [Google Scholar]
  • Soave G. (1972) Equilibrium constants from a modified Redlich–Kwong equation of state, Chem. Eng. Sci. 27, 1197–1203. [Google Scholar]
  • Wang P., Stenby E.H. (1994) Non-iterative flash calculation algorithm in compositional reservoir simulation, Fluid Phase Equilib. 95, 93–108. [Google Scholar]
  • Wang P., Yotov I., Wheeler M., Arbogast T., Dawson C., Parashar M., Sepehrnoori K. (1997) A new generation EOS compositional simulator: Part I – Formulation and Discretization, SPE-37979-MS SPE Reservoir Simulation Symposium, 8–11 June, Dallas, Texas. [Google Scholar]
  • Whitson C.H., Michelsen M.L. (1990) The negative flash, Fluid Phase Equilib. 53, 51–72. [Google Scholar]
  • Wilson G. (1969) A modified Redlich-Kwong equation of state, application to general physical data calculations, Paper no. 15C presented at the AIChE 65th National Meeting, May 4–7, Cleveland, Ohio. [Google Scholar]
  • Yarborough L. (1972) Vapor-liquid equilibrium data for multicomponent mixtures containing hydrocarbon and non-hydrocarbon components, J. Chem. Eng. Data 17, 129–133. [Google Scholar]
  • Zaydullin R., Voskov D., James S.C., Lucia A. (2014) Fully compositional and thermal reservoir simulation, Comput. Chem. Eng. 63, 51–65. [Google Scholar]
  • Zaydullin R., Voskov D., Tchelepi H. (2016) Comparison of EoS-based and K-values-based methods for three-phase thermal simulation, Transp. Porous Media 116, 663–686. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.