Subsurface Fluid Injection and Energy Storage
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Subsurface Fluid Injection and Energy Storage
Article Number 76
Number of page(s) 13
DOI https://doi.org/10.2516/ogst/2019051
Published online 25 October 2019
  • Abercrombie R.E. (1995) Earthquake source scaling relationships from −1 to 5 ML using seismograms recorded at 2.5-km depth, J. Geophys. Res. Atmos. 1002, 24015–24036. [Google Scholar]
  • Akulich A.V., Zvyagin A.V. (2008) Interaction between hydraulic and natural fractures, Fluid Dyn. 43, 428–435. [CrossRef] [Google Scholar]
  • Billi A., Salvini F., Storti F. (2003) The damage zone-fault core transition in carbonate rocks: implications for fault growth, structure and permeability, J. Struct. Geol. 25, 1779–1794. [Google Scholar]
  • Bloch S., Helmold K.P. (1995) Approaches to predicting reservoir quality in sandstones, AAPG Bull. 79, 1, 97–115. [Google Scholar]
  • Brenner S.L., Gudmundsson A. (2004) Arrest and aperture variation of hydrofractures in layered reservoirs, Geol. Soc. Lond. Spec. Publ. 231, 117–128. [CrossRef] [Google Scholar]
  • Chapelle S.L., Milsch H., Castelnau O., Duval P. (1999) Compressive creep of ice containing a liquid intergranular phase: Rate-controlling processes in the dislocation creep regime, Geophys. Res. Lett. 26, 251–254. [Google Scholar]
  • Childs C., Watterson J., Walsh J.J. (1996) A model for the structure and development of fault zones, J. Geol. Soc. 153, 337–340. [CrossRef] [Google Scholar]
  • Chong Z., Li X., Chen X. (2017) Effect of injection site on fault activation and seismicity during hydraulic fracturing, Energies 10, 1619. [Google Scholar]
  • Cleary M.P. (1978) Primary factors governing hydraulic fractures in heterogeneous stratified porous formations. ASME Energy Technical Conference and Exhibition, 5th November, Houston, TX. [Google Scholar]
  • Dahi-Taleghani A., Olson J.E. (2011) Numerical modeling of multi-stranded hydraulic fracture propagation: Accounting for the interaction between induced and natural fractures, SPE J. 16, 575–581. [CrossRef] [Google Scholar]
  • Davies R., Foulger G., Bindley A., Styles P. (2013) Induced seismicity and hydraulic fracturing for the recovery of hydrocarbons, Mar. Pet. Geol. 45, 171–185. [Google Scholar]
  • Dong C.Y., Pater C.J.D. (2001) Numerical implementation of displacement discontinuity method and its application in hydraulic fracturing, Comput. Methods Appl. Mech. Eng. 191, 745–760. [Google Scholar]
  • Dyskin A.V., Caballero A. (2009) Orthogonal crack approaching an interface, Eng. Fract. Mech. 76, 2476–2485. [Google Scholar]
  • Ellsworth W.L. (2013) Injection-induced earthquakes, Science 341, 142. [Google Scholar]
  • Figueiredo B., Tsang C.F., Rutqvist J., Bensabat J., Niemi A. (2015) Coupled hydro-mechanical processes and fault reactivation induced by CO2 Injection in a three-layer storage formation, Int. J. Greenhouse Gas Control 39, 432–448. [CrossRef] [Google Scholar]
  • Figueiredo B., Tsang C.F., Rutqvist J., Niemi A. (2017) Study of hydraulic fracturing processes in shale formations with complex geological settings, J. Pet. Sci. Eng. 152, 361–374. [Google Scholar]
  • Fiori A., Indelman P., Dagan G. (1998) Correlation structure of flow variables for steady flow toward a well with application to highly anisotropic heterogeneous formations, Water Resour. Res. 34, 4, 699–708. [Google Scholar]
  • He M.Y., Hutchinson J.W. (1989) Crack deflection at an interface between dissimilar elastic materials, Int. J. Solids Struct. 25, 1053–1067. [Google Scholar]
  • Hubbert M.K., Willis D.G.W. (1957) Mechanics of hydraulic fracturing, Dev. Pet. Sci. 210, 369–390. [Google Scholar]
  • Ilieva P., Kilzer A., Weidner E. (2016) Measurement of solubility, viscosity, density and interfacial tension of the systems tristearin and CO2 and rapeseed oil and CO2, J. Supercrit. Fluids 117, 40–49. [Google Scholar]
  • Ishida T., Aoyagi K., Niwa T., Chen Y., Murata S., Chen Q., Nakayama Y. (2012) Acoustic emission monitoring of hydraulic fracturing laboratory experiment with supercritical and liquid CO2, Geophys. Res. Lett. 39, 16, 1–6. [Google Scholar]
  • Jeanne P., Guglielmi Y., Cappa F., Rinaldi A.P., Rutqvist J. (2014) The effects of lateral property variations on fault-zone reactivation by fluid pressurization: Application to CO2 pressurization effects within major and undetected fault zones, J. Struct. Geol. 62, 97–108. [Google Scholar]
  • Jia L. (2000) Debonding of the interface as “crack arrestor”, Int. J. Fract. 105, 57–79. [Google Scholar]
  • Kanamori H., Anderson D.L. (1975) Theoretical basis of some empirical relations in seismology, Bull. Seismol. Soc. Am. 65, 1073–1095. [Google Scholar]
  • Khoei A.R., Vahab M., Hirmand M. (2016) Modeling the interaction between fluid-driven fracture and natural fault using an enriched-FEM technique, Int. J. Fract. 197, 1–24. [Google Scholar]
  • Mazzoldi A., Rinaldi A.P., Borgia A., Rutqvist J. (2012) Induced seismicity within geological carbon sequestration projects: Maximum earthquake magnitude and leakage potential from undetected faults, Int. J. Greenhouse Gas Control 10, 434–442. [CrossRef] [Google Scholar]
  • Montgomery C.T., Smith M.B. (2010) Hydraulic fracturing: History of an enduring technology, J. Pet. Technol. 62, 26–32. [CrossRef] [Google Scholar]
  • Mukuhira Y., Moriya H., Ito T., Asanuma H., Häring M. (2017) Pore pressure migration during hydraulic stimulation due to permeability enhancement by low-pressure subcritical fracture slip, Geophys. Res. Lett. 44, 7. [Google Scholar]
  • Othmani Y., Delannay L., Doghri I. (2011) Equivalent inclusion solution adapted to particle debonding with a non-linear cohesive law, Int. J. Solids Struct. 48, 3326–3335. [Google Scholar]
  • Rinaldi A.P., Rutqvist J., Cappa F. (2014) Geomechanical effects on CO2 leakage through fault zones during large-scale underground injection, Int. J. Greenhouse Gas Control 20, 117–131. [CrossRef] [Google Scholar]
  • Roche V., van der Baan M. (2015) The role of lithological layering and pore pressure on fluid-induced microseismicity, J. Geophys. Res. Solid Earth 120, 2, 923–943. [Google Scholar]
  • Roche V., van der Baan M., Preisig G. (2018) A study of 3D modeling of hydraulic fracturing and stress perturbations during fluid injection, J. Pet. Sci. Eng. 170, 829–843. [Google Scholar]
  • Rutqvist J., Rinaldi A.P., Cappa F., Moridis G.J. (2013) Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs, J. Pet. Sci. Eng. 107, 31–44. [Google Scholar]
  • Savalli L., Engelder T. (2005) Mechanisms controlling rupture shape during subcritical growth of joints in layered rocks, Geol. Soc. Am. Bull. 117, 436–449. [Google Scholar]
  • Smith M.B., Bale A.B., Britt L.K., Klein H.H., Siebrits E., Dang X. (2001) Layered modulus effects on fracture propagation, proppant placement, and fracture modeling, in: SPE Annual Technical Conference and Exhibition, 30 September–3 October, New Orleans, LA. [Google Scholar]
  • Swartz T. (2011) Hydraulic fracturing: Risks and risk management, Nat. Res. Environ. 26, 30–59. [Google Scholar]
  • Thomas V.L., Kitanidis P.K. (1989) A numerical spectral approach for the derivation of piezometric head covariance functions, Water Resour. Res. 25, 11, 2287–2298. [Google Scholar]
  • Vengosh A., Jackson R.B., Warner N., Darrah T.H., Kondash A. (2014) A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States, Environ. Sci. Technol. 48, 8334–8348. [CrossRef] [PubMed] [Google Scholar]
  • Warpinski N.R., Schmidt R., Northrop D. (1982) In-situ stresses: the predominant influence on hydraulic fracture containment, J. Pet. Technol. 34, 653–664. [CrossRef] [Google Scholar]
  • Wei X., Li Q., Li X., Sun Y. (2016) Impact indicators for caprock integrity and induced seismicity in CO2 geosequestration: Insights from uncertainty analyses, Nat. Haz. 81, 1–21. [CrossRef] [Google Scholar]
  • Wei X.C., Li Q., Li X.Y., Sun Y.K., Liu X.H. (2015) Uncertainty analysis of impact indicators for the integrity of combined caprock during CO2 geosequestration, Eng. Geol. 196, 37–46. [Google Scholar]
  • Zhou J., Chen M., Jin Y., Zhang G.Q. (2008) Analysis of fracture propagation behavior and fracture geometry using a tri-axial fracturing system in naturally fractured reservoirs, Int. J. Rock Mech. Min. Sci. 45, 1143–1152. [CrossRef] [Google Scholar]
  • Zoback M.D., Kohli A.H., Das I., Mcclure M.W. (2012) The importance of slow slip on faults during hydraulic fracturing stimulation of shale gas reservoirs. in: SPE Americas Unconventional Resources Conference, 5–7 June, Pittsburgh, PA, USA. Society of Petroleum Engineers. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.