- Ben Gharbia I., Flauraud E. (2019) Study of compositional multiphase flow formulation using complementarity conditions, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 74, 43. [CrossRef] [Google Scholar]
- Chien M.C., Lee S.T. (1983) A new equilibrium coefficient correlation method for compositional simulators, SPE-12243-MS, Reservoir Simulation Symposium, November 15–18, San Francisco, CA. [Google Scholar]
- Dalton B.J. (1970) Two-phase equilibria of analytical binary solutions near the critical point, U.S. Bureau of Mines, Information Circular 8486. [Google Scholar]
- Dalton B.J., Barieau R.E. (1968) Equations for calculating various thermodynamic functions of a two-component system from an empirical equation of state, including liquid-vapor equilibria data, Technical Report BM-RI-7076, U.S. Bureau of Mines, Amarillo, TX. [Google Scholar]
- Fleming P.D. III, Vinatieri J.E. (1979) Quantitative interpretation of phase volume behavior of multicomponent systems near critical points, AIChE J. 25, 493–502. [Google Scholar]
- Gaganis V. (2018) Rapid phase stability calculations in fluid flow simulation using simple discriminating functions, Comput. Chem. Eng. 108, 112–127. [Google Scholar]
- Gaganis V., Varotsis N. (2014) An integrated approach for rapid phase behavior calculations in compositional modeling, J. Petrol. Sci. Eng. 118, 74–87. [CrossRef] [Google Scholar]
- He C., Mu L., Xu A., Zhao L., He J., Zhang A., Shan F., Luo E. (2019) Phase behavior and miscible mechanism in the displacement of crude oil with associated sour gas, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 74, 54. [CrossRef] [Google Scholar]
- Hendriks E.M. (1988) Reduction theorem for phase equilibrium problems, Ind. Eng. Chem. Res. 27, 1728–1732. [Google Scholar]
- Hendriks E.M., van Bergen A.R.D. (1992) Application of a reduction method to phase equilibria calculations, Fluid Phase Equilib. 74, 17–34. [Google Scholar]
- Jensen F., Michelsen M.L. (1990) Calculation of first contact and multiple contact minimum miscibility pressure, In Situ 14, 1–17. [Google Scholar]
- Kaliappan C.S., Rowe A.M. (1971) Calculation of pressure-temperature phase envelopes of multicomponent systems, Soc. Petrol. Eng. J. 11, 243–251. [CrossRef] [Google Scholar]
- Kazemi H., Vestal C.R., Shank D.G. (1978) An efficient multicomponent numerical simulator, Soc. Petr. Eng. J. 18, 355–368. [CrossRef] [Google Scholar]
- Landau L., Lifshitz E. (1959) Fluid mechanics, Pergamon, Section 64. [Google Scholar]
- Levelt Sengers J.M.H., Morrison G., Chang R.F. (1983) Critical behavior in fluids and fluid mixtures, Fluid Phase Equilib. 14, 19–44. [Google Scholar]
- Luo E., Fan Z., Hu Y., Zhao L., Wang J. (2019) An evaluation on mechanisms of miscibility development in acid gas injection for volatile oil reservoirs, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 74, 59. [Google Scholar]
- Mehra R.K., Heidemann R.A., Aziz K. (1982) Computation of multiphase equilibrium for compositional simulation, Soc. Petrol. Eng. J 22, 61–68. [CrossRef] [Google Scholar]
- Michelsen M.L. (1982a) The isothermal flash problem. Part I. Stability, Fluid Phase Equilib. 9, 1–19. [Google Scholar]
- Michelsen M.L. (1982b) The isothermal flash problem. Part II. Phase split calculation, Fluid Phase Equilib. 9, 21–40. [Google Scholar]
- Michelsen M.L. (1984) Calculation of critical points and phase boundaries in the critical region, Fluid Phase Equilib. 16, 57–76. [Google Scholar]
- Michelsen M.L. (1986) Simplified flash calculations for cubic equations of state, Ind. Eng. Chem. Proc. Des. Dev. 25, 84–188. [CrossRef] [Google Scholar]
- Montel F. (1998) New tools for oil and gas reservoir fluid management, Revue de l’Institut Français du Pétrole 53, 9–11. [Google Scholar]
- Nghiem L.X., Li Y.K. (1990) Approximate flash calculations for equation-of-state compositional models, Soc. Petrol. Eng. Res. Eng. 5, 107–114. [Google Scholar]
- Nichita D.V. (2006) a reduction method for phase equilibrium calculation with cubic equations of state, Braz. J. Chem. Eng 23, 427–434. [CrossRef] [Google Scholar]
- Nichita D.V. (2008) Phase envelope construction for mixtures with many components, Energy Fuels 22, 488–495. [Google Scholar]
- Nichita D.V., Graciaa A. (2011) A new reduction method for phase equilibrium calculations, Fluid Phase Equilib. 302, 226–233. [Google Scholar]
- Nichita D.V., Leibovici C.F. (2006) An analytical-component delumping procedure for equations of state with non-zero binary interaction consistent pseudoparameters, Fluid Phase Equilib. 245, 71–82. [Google Scholar]
- Nichita D.V., Minescu F. (2004) Efficient phase equilibrium calculations in a reduced flash context, Can. J. Chem. Eng. 82, 1225–1238. [Google Scholar]
- Nichita D.V., Petitfrere M. (2013) Phase stability analysis using a reduction method, Fluid Phase Equilib. 358, 27–39. [Google Scholar]
- Nichita D.V., Broseta D., de Hemptinne J.-C., Lachet V. (2007a) Efficient phase equilibrium calculation for compositional simulation: the direct reduced flash, Petrol. Sci. Technol. 25, 315–342. [CrossRef] [Google Scholar]
- Nichita D.V., Broseta D., Montel F. (2007b) Calculation of convergence pressure/temperature and stability test limit loci of mixtures with cubic equations of state, Fluid Phase Equilib. 261, 176–184. [Google Scholar]
- Peng D.Y., Robinson D.B. (1976) A new two-constant equation of state, Ind. Eng. Chem. Fundam. 15, 59–64. [CrossRef] [Google Scholar]
- Petitfrere M., Nichita D.V. (2015) Multiphase equilibrium calculations using a reduction method, Fluid Phase Equilib. 401, 110–126. [Google Scholar]
- Rannou G., Voskov D., Tchelepi H. (2013) Tie-line-based K-value method for compositional simulation, SPE J. 18, 1112–1122. [CrossRef] [Google Scholar]
- Robinson D.B., Peng D.Y. (1978) The characterization of the heptanes and heavier fractions for the GPA Peng-Robinson programs, Research Report, Gas Processors Association, Tulsa, Okla, RR-28. [Google Scholar]
- Rowe A.M. (1967) The critical composition method – a new convergence pressure method, Soc. Petrol. Eng. J. 7, 54–60. [CrossRef] [Google Scholar]
- Soave G. (1972) Equilibrium constants from a modified Redlich–Kwong equation of state, Chem. Eng. Sci. 27, 1197–1203. [Google Scholar]
- Wang P., Stenby E.H. (1994) Non-iterative flash calculation algorithm in compositional reservoir simulation, Fluid Phase Equilib. 95, 93–108. [Google Scholar]
- Wang P., Yotov I., Wheeler M., Arbogast T., Dawson C., Parashar M., Sepehrnoori K. (1997) A new generation EOS compositional simulator: Part I – Formulation and Discretization, SPE-37979-MS SPE Reservoir Simulation Symposium, 8–11 June, Dallas, Texas. [Google Scholar]
- Whitson C.H., Michelsen M.L. (1990) The negative flash, Fluid Phase Equilib. 53, 51–72. [Google Scholar]
- Wilson G. (1969) A modified Redlich-Kwong equation of state, application to general physical data calculations, Paper no. 15C presented at the AIChE 65th National Meeting, May 4–7, Cleveland, Ohio. [Google Scholar]
- Yarborough L. (1972) Vapor-liquid equilibrium data for multicomponent mixtures containing hydrocarbon and non-hydrocarbon components, J. Chem. Eng. Data 17, 129–133. [Google Scholar]
- Zaydullin R., Voskov D., James S.C., Lucia A. (2014) Fully compositional and thermal reservoir simulation, Comput. Chem. Eng. 63, 51–65. [Google Scholar]
- Zaydullin R., Voskov D., Tchelepi H. (2016) Comparison of EoS-based and K-values-based methods for three-phase thermal simulation, Transp. Porous Media 116, 663–686. [Google Scholar]
Open Access
Numéro |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
|
|
---|---|---|
Numéro d'article | 77 | |
Nombre de pages | 13 | |
DOI | https://doi.org/10.2516/ogst/2019049 | |
Publié en ligne | 25 octobre 2019 |
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.