Open Access
Issue
Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles
Volume 74, 2019
Article Number 78
Number of page(s) 15
DOI https://doi.org/10.2516/ogst/2019050
Published online 25 October 2019
  • Bera A., Mandal A. (2015) Microemulsions: A novel approach to enhanced oil recovery: A review, J. Pet. Explor. Prod. Technol. 5, 3, 255–268. doi: 10.1007/s13202-014-0139-5. [Google Scholar]
  • Geetha S., Banat I.M., Joshi S.J. (2018) Biosurfactants: Production and potential applications in Microbial Enhanced Oil Recovery (MEOR), Biocatal. Agric. Biotechnol. 14, 23–32. doi: 10.1016/j.bcab.2018.01.010. [CrossRef] [Google Scholar]
  • Patel J., Borgohain S., Kumar M., Rangarajan V., Somasundaran P., Sen R. (2015) Recent developments in microbial enhanced oil recovery, Renew. Sustain. Energy Rev. 52, 1539–1558. doi: 10.1016/j.rser.2015.07.135. [CrossRef] [Google Scholar]
  • Muggeridge A., Cockin A., Webb K., Frampton H., Collins I., Moulds T., Salino P. (2014) Recovery rates, enhanced oil recovery and technological limits, Phil. Trans. R. Soc. A 372, 2006, 20120320. doi: 10.1098/rsta.2012.0320. [CrossRef] [Google Scholar]
  • Amiri H.A., Hamouda A. (2014) Pore-scale modeling of non-isothermal two phase flow in 2D porous media: Influences of viscosity, capillarity, wettability and heterogeneity, Int. J. Multiphase Flow 61, 14–27. doi: 10.1016/j.ijmultiphaseflow.2014.01.001. [CrossRef] [Google Scholar]
  • Salehi M., Johnson S.J., Liang J.-T. (2008) Mechanistic study of wettability alteration using surfactants with applications in naturally fractured reservoirs, Langmuir 24, 24, 14099–14107. doi: 10.1021/la802464u. [CrossRef] [PubMed] [Google Scholar]
  • Sun S., Luo Y., Cao S., Li W., Zhang Z., Jiang L., Dong H., Yu L., Wu W.M. (2013) Construction and evaluation of an exopolysaccharide-producing engineered bacterial strain by protoplast fusion for microbial enhanced oil recovery, Bioresour. Technol. 144, 44–49. doi: 10.1016/j.biortech.2013.06.098. [Google Scholar]
  • Brown L.R. (2010) Microbial enhanced oil recovery (MEOR), Curr. Opin. Microbiol. 13, 3, 316–320. doi: 10.1016/j.mib.2010.01.011. [CrossRef] [PubMed] [Google Scholar]
  • Lazar I., Petrisor I., Yen T. (2007) Microbial enhanced oil recovery (MEOR), Pet. Sci. Technol. 25, 11, 1353–1366. doi: 10.1080/10916460701287714. [Google Scholar]
  • Armstrong R.T., Wildenschild D., Bay B.K. (2015) The effect of pore morphology on microbial enhanced oil recovery, J. Pet. Sci. Eng. 130, 16–25. doi: 10.1016/j.petrol.2015.03.010. [Google Scholar]
  • Dhanarajan G., Rangarajan V., Bandi C., Dixit A., Das S., Ale K., Sen R. (2017) Biosurfactant-biopolymer driven microbial enhanced oil recovery (MEOR) and its optimization by an ANN-GA hybrid technique, J. Biotechnol. 256, 46–56. doi: 10.1016/j.jbiotec.2017.05.007. [CrossRef] [PubMed] [Google Scholar]
  • Hajibagheri F., Hashemi A., Lashkarbolooki M., Ayatollahi S. (2018) Investigating the synergic effects of chemical surfactant (SDBS) and biosurfactant produced by bacterium (Enterobacter cloacae) on IFT reduction and wettability alteration during MEOR process, J. Mol. Liq. 256, 277–285. doi: 10.1016/j.molliq.2018.02.020. [Google Scholar]
  • Sarafzadeh P., Hezave A.Z., Mohammadi S., Niazi A., Ayatollahi S. (2014) Modification of rock/fluid and fluid/fluid interfaces during MEOR processes, using two biosurfactant producing strains of Bacillus stearothermophilus SUCPM# 14 and Enterobacter cloacae: A mechanistic study, Colloids Surf. B 117, 457–465. doi: 10.1016/j.colsurfb.2013.12.002. [CrossRef] [Google Scholar]
  • Al-Sulaimani H., Joshi S., Al-Wahaibi Y., Al-Bahry S., Elshafie A., Al-Bemani A. (2011) Microbial biotechnology for enhancing oil recovery: Current developments and future prospects, Biotechnol. Bioinf. Bioeng. 1, 2, 147–158. [Google Scholar]
  • Mohammed M., Babadagli T. (2015) Wettability alteration: A comprehensive review of materials/methods and testing the selected ones on heavy-oil containing oil-wet systems, Adv. Colloid Interface Sci. 220, 54–77. doi: 10.1016/j.cis.2015.02.006. [CrossRef] [PubMed] [Google Scholar]
  • Sen R. (2008) Biotechnology in petroleum recovery: The microbial EOR, Prog. Energy Combust. Sci. 34, 6, 714–724. doi: 10.1016/j.pecs.2008.05.001. [Google Scholar]
  • Rokhforouz M.R., Amiri H.A. (2017) Pore-level influence of wettability on counter-current spontaneous imbibition, 79th EAGE Conference and Exhibition, Paris, France, 12–15 June 2017. doi: 10.3997/2214-4609.201701510. [Google Scholar]
  • Morrow N.R., Mason G. (2001) Recovery of oil by spontaneous imbibition, Curr. Opin. Colloid Interface Sci. 6, 4, 321–337. doi: 10.1016/S1359-0294(01)00100-5. [Google Scholar]
  • Mason G., Morrow N.R. (2013) Developments in spontaneous imbibition and possibilities for future work, J. Pet. Sci. Eng. 110, 268–293. doi: 10.1016/j.petrol.2013.08.018. [Google Scholar]
  • Rabbani H.S., Joekar-Niasar V., Pak T., Shokri N. (2017) New insights on the complex dynamics of two-phase flow in porous media under intermediate-wet conditions, Sci. Rep. 7, 4584. doi: 10.1038/s41598-017-04545-4. [CrossRef] [PubMed] [Google Scholar]
  • Erfani H., Joekar-Niasar V., Farajzadeh R. (2019) Impact of micro-heterogeneity on upscaling reactive transport in geothermal energy, ACS Earth Space Chem. 3, 9, 2045–2057. doi: 10.1021/acsearthspacechem.9b00056. [Google Scholar]
  • Erfani Gahrooei H.R., Ghazanfari M.H., Karimi Malekabadi F. (2018) Wettability alteration of reservoir rocks to gas wetting condition: A comparative study, Can. J. Chem. Eng. 96, 4, 997–1004. doi: 10.1002/cjce.23023. [Google Scholar]
  • Hassanpouryouzband A., Yang J., Tohidi B., Chuvilin E., Istomin V., Bukhanov B., Cheremisin A. (2018) CO2 capture by injection of flue gas or CO2–N2 mixtures into hydrate reservoirs: Dependence of CO2 capture efficiency on gas hydrate reservoir conditions, Environ. Sci. Technol. 52, 7, 4324–4330. doi: 10.1021/acs.est.7b05784. [CrossRef] [PubMed] [Google Scholar]
  • Hassanpouryouzband A., Farahani M.V., Yang J., Tohidi B., Chuvilin E., Istomin V., Bukhanov B. (2019) Solubility of flue gas or carbon dioxide-nitrogen gas mixtures in water and aqueous solutions of salts: Experimental measurement and thermodynamic modeling, Ind. Eng. Chem. Res. 58, 8, 3377–3394. doi: 10.1021/acs.iecr.8b04352. [Google Scholar]
  • Kowalewski E., Rueslåtten I., Steen K., Bødtker G., Torsæter O. (2006) Microbial improved oil recovery—Bacterial induced wettability and interfacial tension effects on oil production, J. Petrol. Sci. Eng. 52, 1, 275–286. doi: 10.1016/j.petrol.2006.03.011. [CrossRef] [Google Scholar]
  • Darvishi P., Ayatollahi S., Roostaei A.R. (2015) Microbial enhanced oil recovery, wettability alteration and interfacial tension reduction by an Efficient Bacterial Consortium, ERCPPI-2, J. Oil. Gas. Petrochem. Technol. 2, 27–42. doi: 10.22034/jogpt.2015.9721. [Google Scholar]
  • Karimi M., Mahmoodi M., Niazi A., Al-Wahaibi Y., Ayatollahi S. (2012) Investigating wettability alteration during MEOR process, a micro/macro scale analysis, Colloids Surf. B 95, 129–136. doi: 10.1016/j.colsurfb.2012.02.035. [CrossRef] [Google Scholar]
  • Chisholm J., Kashikar S., Knapp R., Mclnerney M., Menzies D., Silfanus N. (1990) Microbial enhanced oil recovery: Interfacial tension and gas-induced relative permeability effects, SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers. doi: 10.2118/20481-ms. [Google Scholar]
  • Arismendi Florez J.J., Ferrari J.V., Michelon M., Ulsen C. (2019) Construction of synthetic carbonate plugs: A review and some recent developments, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 74, 29. doi: 10.2516/ogst/2019001. [CrossRef] [Google Scholar]
  • Jack T., Shaw J., Wardlaw N., Costerton J. (1989) Microbial plugging in enhanced oil recovery, Dev. Petrol. Sci. 22, 125–149. doi: 10.1016/s0376-7361(09)70095-0. [Google Scholar]
  • Afrapoli M.S., Alipour S., Torsaeter O. (2011) Fundamental study of pore scale mechanisms in microbial improved oil recovery processes, Transp. Porous Media 90, 3, 949–964. doi: 10.1007/s11242-011-9825-7. [Google Scholar]
  • Armstrong R.T., Wildenschild D. (2012) Investigating the pore-scale mechanisms of microbial enhanced oil recovery, J. Pet. Sci. Eng. 94, 155–164. doi: 10.1016/j.petrol.2012.06.031. [Google Scholar]
  • Kalish P., Stewart J., Rogers W., Bennett E. (1964) The effect of bacteria on sandstone permeability, J. Pet. Technol. 16, 7, 805–814. doi: 10.2118/579-pa. [CrossRef] [Google Scholar]
  • Suthar H., Hingurao K., Desai A., Nerurkar A. (2009) Selective plugging strategy-based microbial-enhanced oil recovery using Bacillus licheniformis TT33, J. Microbiol. Biotechnol. 19, 10, 1230–1237. [Google Scholar]
  • Stewart T.L., Scott Fogler H. (2002) Pore-scale investigation of biomass plug development and propagation in porous media, Biotechnol. Bioeng. 77, 5, 577–588. doi: 10.1002/bit.10044. [CrossRef] [PubMed] [Google Scholar]
  • Karadimitriou N., Hassanizadeh S. (2012) A review of micromodels and their use in two-phase flow studies, Vadose Zone J. 11, 3. doi: 10.2136/vzj2011.0072. [Google Scholar]
  • Zhang C., Oostrom M., Wietsma T.W., Grate J.W., Warner M.G. (2011) Influence of viscous and capillary forces on immiscible fluid displacement: Pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering, Energy Fuels 25, 8, 3493–3505. doi: 10.1021/ef101732k. [Google Scholar]
  • Lenormand R., Touboul E., Zarcone C. (1988) Numerical models and experiments on immiscible displacements in porous media, J. Fluid Mech. 189, 165–187. doi: 10.1017/s0022112088000953. [Google Scholar]
  • Fan Y., Gao K., Chen J., Li W., Zhang Y. (2018) Low-cost PMMA-based microfluidics for the visualization of enhanced oil recovery, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 26. doi: 10.2516/ogst/2018026. [CrossRef] [Google Scholar]
  • Khan H.A., Gbosi A., Britton L.N., Bryant S.L. (2008) Mechanistic models of microbe growth in heterogeneous porous media, SPE Symposium on Improved Oil Recovery, Society of Petroleum Engineers. doi: 10.2118/113462-ms. [Google Scholar]
  • Raeesi B., Piri M. (2009) The effects of wettability and trapping on relationships between interfacial area, capillary pressure and saturation in porous media: A pore-scale network modeling approach, J. Hydrol. 376, 3–4, 337–352. doi: 10.1016/j.jhydrol.2009.07.060. [CrossRef] [Google Scholar]
  • Gahrooei H.R.E., Ghazanfari M.H. (2017) Application of a water based nanofluid for wettability alteration of sandstone reservoir rocks to preferentially gas wetting condition, J. Mol. Liq. 232, 351–360. doi: 10.1016/j.molliq.2017.02.097. [Google Scholar]
  • Li J., Jiang H., Wang C., Zhao Y., Gao Y., Pei Y., Wang C., Dong H. (2017) Pore-scale investigation of microscopic remaining oil variation characteristics in water-wet sandstone using CT scanning, J. Nat. Gas Sci. Eng. 48, 36–45. doi: 10.1016/j.jngse.2017.04.003. [Google Scholar]
  • Blunt M., King P. (1991) Relative permeabilities from two-and three-dimensional pore-scale network modelling, Transp. Porous Media 6, 4, 407–433. doi: 10.1007/bf00136349. [Google Scholar]
  • Piri M., Blunt M.J. (2005) Three-dimensional mixed-wet random pore-scale network modeling of two-and three-phase flow in porous media. I. Model description, Phys. Rev. E 71, 2, 026301. doi: 10.1103/physreve.71.026301. [Google Scholar]
  • Raeini A.Q., Blunt M.J., Bijeljic B. (2012) Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method, J. Comput. Phys. 231, 17, 5653–5668. doi: 10.1016/j.jcp.2012.04.011. [Google Scholar]
  • Bandara U.C., Tartakovsky A.M., Palmer B.J. (2011) Pore-scale study of capillary trapping mechanism during CO2 injection in geological formations, Int. J. Greenhouse Gas Control 5, 6, 1566–1577. doi: 10.1016/j.ijggc.2011.08.014. [CrossRef] [Google Scholar]
  • Tartakovsky A.M., Meakin P. (2006) Pore scale modeling of immiscible and miscible fluid flows using smoothed particle hydrodynamics, Adv. Water Resour. 29, 10, 1464–1478. doi: 10.1016/j.advwatres.2005.11.014. [Google Scholar]
  • Huang H., Huang J.-J., Lu X.-Y. (2014) Study of immiscible displacements in porous media using a color-gradient-based multiphase lattice Boltzmann method, Comput. Fluids 93, 164–172. doi: 10.1016/j.compfluid.2014.01.025. [Google Scholar]
  • Zhang J. (2011) Lattice Boltzmann method for microfluidics: Models and applications, Microfluid. Nanofluid. 10, 1, 1–28. doi: 10.1007/s10404-010-0624-1. [CrossRef] [Google Scholar]
  • Krol M.M., Mumford K.G., Johnson R.L., Sleep B.E. (2011) Modeling discrete gas bubble formation and mobilization during subsurface heating of contaminated zones, Adv. Water Resour. 34, 4, 537–549. doi: 10.1016/j.advwatres.2011.01.010. [Google Scholar]
  • Lenormand R. (1989) Flow through porous media: Limits of fractal patterns, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society. doi: 10.1098/rspa.1989.0048. [Google Scholar]
  • Ferrari A., Lunati I. (2013) Direct numerical simulations of interface dynamics to link capillary pressure and total surface energy, Adv. Water Resour. 57, 19–31. doi: 10.1016/j.advwatres.2013.03.005. [Google Scholar]
  • Shams M., Raeini A.Q., Blunt M.J., Bijeljic B. (2018) A numerical model of two-phase flow at the micro-scale using the volume-of-fluid method, J. Comput. Phys. 357, 159–182. doi: 10.1016/j.jcp.2017.12.027. [Google Scholar]
  • Sethian J.A., Smereka P. (2003) Level set methods for fluid interfaces, Annu. Rev. Fluid Mech. 35, 1, 341–372. doi: 10.1146/annurev.fluid.35.101101.161105. [Google Scholar]
  • Rokhforouz M., Akhlaghi Amiri H.A. (2017) Phase-field simulation of counter-current spontaneous imbibition in a fractured heterogeneous porous medium, Phys. Fluids 29, 6, 062104. doi: 10.1063/1.4985290. [CrossRef] [Google Scholar]
  • Rokhforouz M., Amiri H.A. (2018) Pore-level influence of micro-fracture parameters on visco-capillary behavior of two-phase displacements in porous media, Adv. Water Resour. 113, 260–271. doi: 10.1016/j.advwatres.2018.01.030. [Google Scholar]
  • Rokhforouz M., Amiri H.A. (2019) Effects of grain size and shape distribution on pore-scale numerical simulation of two-phase flow in a heterogeneous porous medium, Adv. Water Resour. 124, 84–95. doi: 10.1016/j.advwatres.2018.12.008. [Google Scholar]
  • Ahmadi P., Ghandi E., Riazi M., Malayeri M.R. (2019) Experimental and CFD studies on determination of injection and production wells location considering reservoir heterogeneity and capillary number, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 74, 4. doi: 10.2516/ogst/2018078. [CrossRef] [Google Scholar]
  • Meakin P., Tartakovsky A.M. (2009) Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media, Rev. Geophys. 47, 3. doi: 10.1029/2008rg000263. [Google Scholar]
  • Amiri H.A., Hamouda A. (2013) Evaluation of level set and phase field methods in modeling two phase flow with viscosity contrast through dual-permeability porous medium, Int. J. Multiphase Flow 52, 22–34. doi: 10.1016/j.ijmultiphaseflow.2012.12.006. [CrossRef] [Google Scholar]
  • Basirat F., Yang Z., Niemi A. (2017) Pore-scale modeling of wettability effects on CO2–brine displacement during geological storage, Adv. Water Resour. 109, 181–195. doi: 10.1016/j.advwatres.2017.09.004. [Google Scholar]
  • Maaref S., Rokhforouz M.R., Ayatollahi S. (2017) Numerical investigation of two phase flow in micromodel porous media: Effects of wettability, heterogeneity, and viscosity, Can. J. Chem. Eng. 95, 6, 1213–1223. doi: 10.1002/cjce.22762. [Google Scholar]
  • Alpak F.O., Riviere B., Frank F. (2016) A phase-field method for the direct simulation of two-phase flows in pore-scale media using a non-equilibrium wetting boundary condition, Comput. Geosci. 20, 5, 881–908. doi: 10.1007/s10596-015-9551-2. [Google Scholar]
  • Phuong K., Hanazaki S., Kakii K., Nikata T. (2012) Involvement of Acinetobacter sp. in the floc-formation in activated sludge process, J. Biotechnol. 157, 4, 505–511. doi: 10.1016/j.jbiotec.2011.09.024. [Google Scholar]
  • COMSOL Multiphysics (2012) User’s Guide, Version 4.3, Comsol Inc., Stockholm, Sweden. [Google Scholar]
  • Rokhforouz M.-R., Rabbani A., Ayatollahi S., Taghikhani V. (2016) Numerical analysis of heat conduction treated with highly conductive copper oxide nanoparticles in porous media, Spec. Top. Rev. Porous Media 7, 2. doi: 10.1615/specialtopicsrevporousmedia.2016017291. [Google Scholar]
  • Cahn J.W., Hilliard J.E. (1958) Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28, 2, 258–267. doi: 10.1002/9781118788295.ch4. [Google Scholar]
  • Yue P., Feng J.J. (2011) Wall energy relaxation in the Cahn-Hilliard model for moving contact lines, Phys. Fluids 23, 1, 012106. doi: 10.1063/1.3541806. [CrossRef] [Google Scholar]
  • Yue P., Zhou C., Feng J.J. (2010) Sharp-interface limit of the Cahn-Hilliard model for moving contact lines, J. Fluid Mech. 645, 279–294. doi: 10.1017/s0022112009992679. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.