Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Article Number 82
Number of page(s) 10
Published online 18 November 2019
  • Alekseenko S.V., Kuibin P.A., Okulov V.L., Shtork S.I. (1999) Helical vortices in swirl flow, J. Fluid Mech. 382, 195–243. [Google Scholar]
  • Ali A.J., Scott S.L., Fehn B. (2005) Investigation of new tool to unload liquids from stripper-gas wells, SPE Prod. Facil. 20, 4, 306–316. [CrossRef] [Google Scholar]
  • Ansari A.M., Sylvester N.D., Shoham O., Brill J.P. (1990) A comprehensive mechanistic model for upward two-phase flow in wellbores, SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Barnea D. (1986) Transition from annular flow and from dispersed bubble flow – Unified models for the whole range of pipe inclinations, Int. J. Multiph. Flow 12, 5, 733–744. [CrossRef] [Google Scholar]
  • Du W. (2015) Research on technology of eddy current drainage gas production in West Sichuan Gas field. PhD Thesis, Southwest Petroleum University, China. [Google Scholar]
  • Facciolo L., Tillmark N., Talamelli A., Alfredsson P.H. (2007) A study of swirling turbulent pipe and jet flows, Phys. Fluids 19, 3, 035–105. [CrossRef] [Google Scholar]
  • Fu J., Feng J., Chen P., Wei H., Liu Z. (2015) Simulation on wellbore pressure during dynamic kill drilling in deep water, Acta Pet. Sin. 36, 2, 232–237. [Google Scholar]
  • Hein N.W. (2007) A review of DOE testing of VortexFlow technology for Petroleum & Natural Gas Production and Operations, in: Proceedings of the Annual Southwestern Petroleum Short Course, Southwestern Petroleum Short Course Association, TX, USA, 15 p. [Google Scholar]
  • Liu K., Sun L. (2017) Research on water drainage and gas recovery technology by vortex tool, China Pet. Mach. 45, 9, 87–91. [Google Scholar]
  • Li K., Wang B., Hang Z., Ji H., Li H. (2017) Application of K-means clustering in flow pattern identification of CCERT system, J. Beijing Univ. Aeronaut. Astronaut. 43, 11, 2280–2285. [Google Scholar]
  • Liu W., Bai B. (2015) Swirl decay in the gas-liquid two-phase swirling flow inside a circular straight pipe, Exp. Thermal Fluid Sci. 68, 187–195. [CrossRef] [Google Scholar]
  • Milliken M. (2008) RMOTC-RMOTC tests Vortex Flow surface tools-Positive results were seen when units were put through tests dealing with pressure reduction and ice and paraffin blockage, World Oil, 229, 95–97. [Google Scholar]
  • Mingaleeva G.R. (2002) On the mechanism of a helical motion of fluids in regions of sharp path bending, Tech. Phys. Lett. 28, 8, 657–659. [CrossRef] [Google Scholar]
  • Morsi S.A.J., Alexander A.J. (1972) An investigation of particle trajectories in two-phase flow systems, J. Fluid Mech. 55, 2, 193–208. [Google Scholar]
  • Petalas N., Aziz K. (1998) A mechanistic model for multiphase flow in pipes, Annual Technical Meeting, Petroleum Society of Canada. [Google Scholar]
  • Ryu S.H., Park G.C. (2011) A droplet entrainment model based on the force balance of an interfacial wave in two-phase annular flow, Nuclear Eng. Des. 241, 9, 3890–3897. [Google Scholar]
  • Shi Y., Yan T., Zhao X. (2018) Study on feasibility of the vortex tool for gas well fluid drainage in different flow regimes, China Pet. Mach. 46, 11, 116–120. [Google Scholar]
  • Singh K.A., Sarkar P., Praleya P., Sai G.S. (2016) Unconventional cyclone gas lift completion for offshore wells of Cambay Basin: A smart completion to optimize production and well intervention, SPE Annual Technical Conference and Exhibition Society of Petroleum Engineers. [Google Scholar]
  • Surendra M., Falcone G., Teodoriu C. (2009) Investigation of swirl flows applied to the oil and gas industry, SPE Proj. Facil. Constr. 4, 1, 1–6. [CrossRef] [Google Scholar]
  • Taitel Y., Dukler A.E. (1976) A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow, AIChE J. 22, 1, 47–55. [Google Scholar]
  • Wei H., Zhi L., Wu W. (2014) Research development of unloading in gas well based on the swirling mechanism, Inner Mongolia Petrochem. Ind. 40, 7, 71–73. [Google Scholar]
  • Wu X., Zhou C., An Y., Liu X., Cen X. (2016) Dynamic analysis of liquid droplet and optimization of helical angle for vortex drainage gas recovery, Nat. Gas Ind. 36, 5, 45–50. [Google Scholar]
  • Yang T., Yu S., Yang H., Li J., Li N., Cao G., Wang Y. (2012) A new technology of vortex dewatering gas recovery in gas wells and its application, Nat. Gas Ind. 32, 8, 63–66. [Google Scholar]
  • Zhang C., Jin D., Wang J., Zhang J. (2012) Drainage gas recovery by downhole eddy current used for Sulige Gasfield, Nat. Gas Technol. Econ. 6, 5, 45–48. [Google Scholar]
  • Zhang Q., Li M. (2011) Theory and technology of oil production engineering, China University of Petroleum Press, Qingdao, pp. 40–75. [Google Scholar]
  • Zhang Z., Liao R., Zhao Y., Cheng F., Liu J. (2018) Influence of guide vane number and arrangement pattern on performance of downhole vortex tools, J. Xi’an Shiyou Univ. (Nat. Sci. Ed.) 33, 5, 42–49. [Google Scholar]
  • Zhou C., Wu X., Zhang T., Zhao X. (2018) Experimental research for parameter optimization of the vortex tool for drainage gas recovery, Pet. Drill. Tech. 46, 6, 105–110. [Google Scholar]
  • Zhu Q., Zhang J., Xie F., Zeng C. (2013) Application of eddy drainage gas recovery to gasfields in Sichuan Basin, Nat. Gas Technol. Econ. 7, 1, 37–39. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.