Subsurface Fluid Injection and Energy Storage
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Subsurface Fluid Injection and Energy Storage
Article Number 83
Number of page(s) 13
DOI https://doi.org/10.2516/ogst/2019055
Published online 18 November 2019
  • Katsoulidis A.P., Kanatzidis M.G. (2011) Phloroglucinol based microporous polymeric organic frameworks with −OH functional groups and high CO2 capture capacity, Chem. Mater. 23, 7, 1818–1824. [Google Scholar]
  • Tolón-Becerra A., Pérez-Martínez P., Lastra-Bravo X., Otero-Pastor I. (2012) A methodology for territorial distribution of CO2, emission reductions in transport sector, Int. J. Energy Res. 36, 14, 1298–1313. [CrossRef] [Google Scholar]
  • Geough E.J.M., Little S.M., Janzen H.H., Mcallister T.A., Mcginn S.M., Beauchemin K.A. (2012) Life-cycle assessment of greenhouse gas emissions from dairy production in Eastern Canada: A case study, J. Dairy Sci. 95, 9, 5164–5175. [Google Scholar]
  • Falcon-Suarez I., North L., Amalokwu K., Best A. (2016) Integrated geophysical and hydromechanical assessment for CO2 storage: Shallow low permeable reservoir sandstones, Geophys. Prospect. 64, 4, 828–847. [Google Scholar]
  • Rutqvist J. (2012) The geomechanics of CO2 storage in deep sedimentary formations, Geotech. Geol. Eng. 30, 3, 525–551. [CrossRef] [Google Scholar]
  • Michael K., Golab A., Shulakova V., Ennis-King J., Allinson G., Sharma S., Aiken T. (2010) Geological storage of CO2, in saline aquifers – A review of the experience from existing storage operations, Int. J. Greenh. Gas Control. 4, 4, 659–667. [CrossRef] [Google Scholar]
  • Celia M.A., Bachu S., Nordbotten J.M., Bandilla K.W. (2015) Status of CO2 storage in deep saline aquifers with emphasis on modeling approaches and practical simulations, Water Resour. Res. 51, 9, 6846–6892. [Google Scholar]
  • Li Q., Chen Z.A., Zhang J.T., Liu L.C., Li X.C., Jia L. (2016) Positioning and revision of CCUS technology development in China, Int. J. Greenh. Gas Control. 46, 282–293. [CrossRef] [Google Scholar]
  • Bachu S., Adams J.J. (2003) Sequestration of CO2 in geological media in response to climate change: Capacity of deep saline aquifers to sequester CO2 in solution, Energy Convers. Manag. 44, 20, 3151–3175. [Google Scholar]
  • Bielicki J.M., Pollak M.F., Deng H., Wilson E.J., Fitts J.P., Peters C.A. (2016) The leakage risk monetization model for geologic CO2 storage, Environ. Sci. Technol. 50, 10, 4923–4931. [CrossRef] [PubMed] [Google Scholar]
  • Dai Z.X., Viswanathan H., Middleton R., Pan F., Ampomah W., Yang C.B., Jia W., Xiao T., Lee S.Y., McPherson B., Balch R., Grigg R., White M. (2016) CO2 accounting and risk analysis for CO2 sequestration at enhanced oil recovery sites, Environ. Sci. Technol. 50, 14, 7546–7554. [CrossRef] [PubMed] [Google Scholar]
  • Yang G.D., Li Y.L., Atrens A., Liu D.Q., Wang Y.S., Jia L., Lu Y. (2017) Reactive transport modeling of long-term CO2 sequestration mechanisms at the Shenhua CCS demonstration project, China, J. Earth Sci. 28, 3, 457–472. [CrossRef] [Google Scholar]
  • Siirila-Woodburn E.R., Cihan A., Birkholzer J.T. (2017) A risk map methodology to assess the spatial and temporal distribution of leakage into groundwater from Geologic Carbon Storage, Int. J. Greenh. Gas Control. 59, 99–109. [CrossRef] [Google Scholar]
  • Gherardi F., Xu T.F., Pruess K. (2007) Numerical modeling of self-limiting and self-enhancing caprock alteration induced by CO2, storage in a depleted gas reservoir, Chem. Geol. 244, 1–2, 103–129. [Google Scholar]
  • Nazari Moghaddam R., Rostami B., Pourafshary P. (2015) Scaling analysis of the convective mixing in porous media for geological storage of CO2: An experimental approach, Chem. Eng. Commun. 202, 6, 815–822. [Google Scholar]
  • Fujii T., Uehara S.I., Sorai M. (2015) Impact of effective pressure on threshold pressure of Kazusa Group Mudstones for CO2 geological sequestration, Mater. Trans. 56, 4, 519–528. [CrossRef] [Google Scholar]
  • Uemura S., Matsui Y., Kondo F., Tsushima S., Hirai S. (2016) Injection of nanosized CO2 droplets as a technique for stable geological sequestration, Int. J. Greenh. Gas Control. 45, 62–69. [CrossRef] [Google Scholar]
  • Li Q., Liu G.Z., Liu X.H., Li X.C. (2013) Application of a health, safety, and environmental screening and ranking framework to the Shenhua CCS project, Int. J. Greenh. Gas Control. 17, 5, 504–514. [CrossRef] [Google Scholar]
  • Wang F.G., Mi Z.X., Sun Z.J., Li X.F., Lan T.S., Yuan Y., Xu T.F. (2017) Experimental study on the effects of stress variations on the permeability of feldspar-quartz sandstone, Geofluids 2017, 3, 1–15. [Google Scholar]
  • Xie J., Zhang K.N., Wang Y.S., Qin L.Q., Guo C.B. (2016) Performance assessment of CO2 geological storage in deep saline aquifers in Ordos Basin, China, Rock Soil Mech. 37, 1, 166–174. (in Chinese with English abstract). [Google Scholar]
  • Luquot L., Gouze P. (2009) Experimental determination of porosity and permeability changes induced by injection of CO2 into carbonate rocks, Chem. Geol. 265, 1–2, 148–159. [Google Scholar]
  • Bacon D.H., Dai Z., Zheng L. (2014) Geochemical impacts of carbon dioxide, brine, trace metal and organic leakage into an unconfined, oxidizing limestone aquifer, Energy Procedia 63, 4684–4707. [Google Scholar]
  • Wolf J.L., Niemi A., Bensabat J., Rebscher D. (2016) Benefits and restrictions of 2D reactive transport simulations of CO2 and SO2 co-injection into a saline aquifer using TOUGHREACT V3.0-OMP, Int. J. Greenh. Gas Control. 54, 610–626. [CrossRef] [Google Scholar]
  • Roded R., Paredes X., Holtzman R. (2018) Reactive transport under stress: Permeability evolution in deformable porous media, Earth Planet. Sci. Lett. 493, 198–207. [Google Scholar]
  • Wang Y., Zhang L., Soong Y., Dilmore R., Liu H., Lei H., Li X. (2019) From core-scale experiment to reservoir-scale modeling: A scale-up approach to investigate reaction-induced permeability evolution of CO2 storage reservoir and caprock at a U.S. CO2 storage site, Comput. Geosci. 125, 55–68. [Google Scholar]
  • Soong Y., Howard B.H., Dilmore R.M., Haljasmaa I., Crandall D.M., Zhang L.W., Zhang W., Lin R.H., Irdi G.A., Romanov V.N., Mclendon T.R. (2016) CO2/brine/rock interactions in lower Tuscaloosa formation, Greenh. Gases: Sci. Technol. 6, 6, 824–837. [CrossRef] [Google Scholar]
  • Guo J.Q., Wen D.G., Zhang S.Q., Xu T.F. (2014), Potential evaluation and project of CO2 geological storage in china, Geological Publishing House, Beijing, China, pp. 69–81. [Google Scholar]
  • Xu T.F., Pruess K. (1998) Coupled modeling of non-isothermal multiphase flow, solute transport and reactive chemistry in porous and fractured media: 1. Model development and validation, Lawrence Berkeley National Laboratory Report LBNL-42050, Berkeley, CA, p. 38. [Google Scholar]
  • Xu T.F., Spycher N., Sonnenthal E., Zhang G.X., Zheng L.G., Pruess K. (2011) Toughreact version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions, Comput. Geosci. 37, 6, 763–774. [Google Scholar]
  • Xu T.F., Sonnenthal E., Spycher N., Pruess K. (2006) TOUGHREACT – A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO2, geological sequestration, Comput. Geosci. 32, 2, 145–165. [Google Scholar]
  • Dong J.X., Li Y.L., Yang G.D., Ke Y.B., Wu R.H. (2012) Numerical simulation of CO2-water-rock interaction impact on caprock permeability, Geol. Sci. Technol. Inf. 31, 1, 119–125. (in Chinese with English abstract). [Google Scholar]
  • Guo Z.F., Hu X.F., Cui C. (2004) Affecting factors of Cretaceous-Paleogene shale cap in Jianghan Plain, J. Jianghan Pet. Univ. Staff Work. 17, 2, 10–13. (in Chinese with English abstract). [Google Scholar]
  • Zheng Y., Chen S.L., Zhang W., Xiong P., Jiang L., Qiu G.B., Wang H. (2009) Numerical simulation on geological storage of carbon dioxide in Jiangling depression, Jianghan Basin, China, Geol. Sci. Technol. Inf. 28, 4, 75–82. (in Chinese with English abstract). [Google Scholar]
  • Petroleum Geology Group of Jianghan Oilfield (1991) Petroleum geology of China (Vol. 9): Jianghan oilfield, Petroleum Industry Press, Beijing, China, pp. 157–204. [Google Scholar]
  • Xu T.F., Apps J.A., Pruess K., Yamamoto H. (2007) Numerical modeling of injection and mineral trapping of CO2 with H2S and SO2 in a sandstone formation, Chem. Geol. 242, 3–4, 319–346. [Google Scholar]
  • Zhang W., Li Y., Xu T.F., Cheng H.L., Zheng Y., Xiong P. (2009) Long-term variations of CO2 trapped in different mechanisms in deep saline formations: A case study of the Songliao Basin, China, Int. J. Greenh. Gas Control. 3, 2, 161–180. [CrossRef] [Google Scholar]
  • Lasaga A.C., Soler J.M., Ganor J., Burch T.E., Nagy K.L. (1994) Chemical weathering rate laws and global geochemical cycles, Geochim. Cosmochim. Acta 58, 10, 2361–2386. [Google Scholar]
  • Xu T.F., Sonnenthal E., Spycher N., Pruess K. (2003) TOUGHREACT User’s guide: A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geological media, Lawrence Berkeley National Laboratory, Berkeley, California, pp. 148–157. [Google Scholar]
  • Joachim T., Castillo C., Vong C.Q., Christophe K., Lassin A., Audigane P. (2014) Long-term assessment of geochemical reactivity of CO2 storage in highly saline aquifers: Application to ketzin, in salah and snøhvit storage sites, Int. J. Greenh. Gas Control. 20, 3, 2–26. [CrossRef] [Google Scholar]
  • Tian H.L., Pan F., Tianfu XuTF, McPherson B.J., Yue G.F., Mandalaparty P. (2014) Impacts of hydrological heterogeneities on caprock mineral alteration and containment of CO2 in geological storage sites, Int. J. Greenh. Gas Control. 24, 30–42. [CrossRef] [Google Scholar]
  • Wang K.R., Xu T.F., Tian H.L., Wang F.G. (2016) Impacts of mineralogical compositions on different trapping mechanisms during long-term CO2 storage in deep saline aquifers, Acta Geotech. 11, 5, 1167–1188. [CrossRef] [Google Scholar]
  • Tian H.L., Xu T.F., Wang F.G., Patil V.V., Sun Y., Yue G.F. (2014) A numerical study of mineral alteration and self-sealing efficiency of a caprock for CO2 geological storage, Acta Geotech. 9, 1, 87–100. [CrossRef] [Google Scholar]
  • Gaus I., Azaroual M., Czernichowski-Lauriol I. (2005) Reactive transport modeling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea), Chem. Geol. 217, 3–4, 319–337. [Google Scholar]
  • Ke Y.B., Li Y.L., Zhang W., Dong J.X., Fang Q., Wu R.H. (2012) Impact of halite precipitation on CO2 injection into saline aquifers: A case study of Jianghan Basin, Geol. Sci. Technol. Inf. 31, 3, 109–115. (in Chinese with English abstract). [Google Scholar]
  • Li Y.L., Fang Q., Ke Y.B., Dong J.X., Yang G.D., Ma X. (2012) Effect of high salinity on CO2 geological storage: A case study of Qianjiang depression in Jianghan Basin, Earth Sci. J. China Univ. Geosci. 37, 2, 109–115. (in Chinese with English abstract). [Google Scholar]
  • Smith M.M., Wolery T.J., Carroll S.A. (2013) Kinetics of chlorite dissolution at elevated temperatures and CO2 conditions, Chem. Geol. 347, 1–8. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.