Subsurface Fluid Injection and Energy Storage
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Subsurface Fluid Injection and Energy Storage
Article Number 81
Number of page(s) 14
Published online 18 November 2019
  • Avseth P., Mukerji T., Mavko G. (2006) Quantitative seismic interpretation: Applying rock physics tools to reduce interpretation risk, Cambridge University Press, Cambridge, UK. [Google Scholar]
  • Berrezueta E., González-Menéndeza L., Breitner D., Luquot L. (2013) Pore system changes during experimental CO2 injection into detritic rocks: Studies of potential storage rocks from some sedimentary basins of Spain, Int. J. Greenhouse Gas Control 17, 411–422. [CrossRef] [Google Scholar]
  • Brown L.T. (2002) Integration of rock physics and reservoir simulation for the interpretation of time-lapse seismic data at Weyburn Field, Saskatchewan, Master’s Thesis, Colorado School of Mines, Golden, CO. [Google Scholar]
  • Digby P.J. (1981) The Effective elastic moduli of porous granular rocks, J. Appl. Mech. 48, 803–808. [Google Scholar]
  • Duffaut K., Landrø M. (2007) Vp/Vs ratio versus differential stress and rock consolidation – A comparison between rock models and time-lapse AVO data, Geophysics 72, 5, 81–94. [CrossRef] [Google Scholar]
  • Fӧster A., Schӧner R., Fӧster H.J., Norden B., Blaschke A.-W., Luckert J., Beutler G., Gaupp R., Rhede D. (2010) Reservoir characterization of a CO2 storage aquifer: The upper Triassic Stuttgart formation in the northeast German basin, Mar. Petrol. Geol. 27, 10, 2156–2172. [CrossRef] [Google Scholar]
  • Hovorka S. (2009) Frio brine pilot: The first U.S. sequestration test, South-West Hydrol. 8, 26–31. [Google Scholar]
  • Ivanova A., Kashubin A., Juhojuntti N., Kummerow J., Henninges J., Juhlin Ch, Lüth S., Ivandic M. (2012) Monitoring and volumetric estimation of injected CO2 using 4D seismic, petrophysical data, core measurements and well logging: A case study at Ketzin, Germany, Geophys. Prospect. 60, 957–973, doi: 10.1111/j.1365-2478.2012.01045.x. [Google Scholar]
  • Jensen G.K.S. (2016) Weyburn oilfield core assessment investigating cores from pre and post CO2 injection: Determining the impact of CO2 on the reservoir, Int. J. Greenhouse Gas Control 54, Part 2, 490–498. [CrossRef] [Google Scholar]
  • Karamalidis A., Hakala J.A., Griffith C., Hedges S., Lu J. (2010) Laboratory investigation of CO2 -rock-brine interactions using natural sandstones and brine samples from the SECARB Tuscaloosa injection zone. Presented at Geological Society of America Denver Annual Meeting, 31 October – 3 November, Denver, CO, USA. [Google Scholar]
  • Kharaka Y.K., Cole D.R., Hovorka S.D., Gunter W.D., Knauss K.G., Freifeld B.M. (2006) Gas-water-rock interactions in Frio Formation following CO2 injection: Implications for the storage of greenhouse gases in sedimentary basins, Geology 34, 577–580, doi: 10.1130/G22357.1. [Google Scholar]
  • Lu J., Nicot J.P., Mickler P.J., Ribeiro L.H., Darvari R. (2016) Alteration of Bakken reservoir rock duing CO2-based fracturing – An autoclave reaction experiment, J. Unconv. Oil Gas Res. 14, 2016, 72–85. [CrossRef] [Google Scholar]
  • Ma J., Morozov I.B. (2010) AVO modeling of pressure-saturation effects in Weyburn CO2 sequestration, Leading Edge 29, 2, 178–183. [CrossRef] [Google Scholar]
  • Mavko G., Mukerji T., Dvorkin J.P. (1998) The rock physics handbook: 147–159, Cambridge University Press, Cambridge, UK. [Google Scholar]
  • Mindlin R.D. (1949) Compliance of elastic bodies in contact, J. Appl. Mech. 16, 259–268. [Google Scholar]
  • Murphy W. (1982) Effects of microstructure and pore fluids on the acoustic properties of granular sedimentary materials, PhD Thesis, Stanford University, Stanford, CA. [Google Scholar]
  • Njiekak G., Schmitt D.R., Yam H., Kofman R.F. (2013) CO2 rock physics as part of Weyburn-Midale geological storage project, Int. J. Greenhouse Gas Control 16, Suppl. 1, S118–S133. [CrossRef] [Google Scholar]
  • Riding J.B., Rochelle C. (2005) The IEA Weyburn CO2 monitoring and storage project-final report of the European research team, British Geological Survey, Nottingam. [Google Scholar]
  • Saul M., Lumley D. (2015) The combined effects of pressure and cementation on 4D seismic data, Geophysics 80, 2, 135–148. [CrossRef] [Google Scholar]
  • Skorpa R., Todorovic J., Torsæter M. (2017) Porosity changes in mud-affected rock and cement upon reaction with CO2, Energy Procedia 114, 5266–5274. [Google Scholar]
  • Tambach T.J., Koenen M., Wasch L.J., Bergen F. (2015) Geochemical evaluation of CO2 injection and containment in a depleted gas field, Int. J. Greenhouse Gas Control 32, 2015, 61–80. [CrossRef] [Google Scholar]
  • Thordsen J.J., Kharaka Y.K., Thomas R.B., Ambats G., Abedini A., Manning M.A., Lu J. (2012) Natural heterogeneity and evolving geochemistry of Lower Tuscaloosa Formation brine in response to continuing CO2 injection at Cranfield EOR site, Mississippi, USA, American Geophysical Union 2012 Fall Meeting, December 3–7, 2012, San Francisco, CA, United States. [Google Scholar]
  • Vanorio T. (2015) Recent advances in time-lapse, laboratory rock physics for the characterization and monitoring of fluid-rock interactions, Geophysics 80, 2, WA49–WA59. [CrossRef] [Google Scholar]
  • Wang Y., Han D.H., Ren J.L., Zhang Y., Zhao L. (2018) Microstructure effects on static and dynamic moduli for two sandstones, Meeting, SEG 2018 DPRP, 20–22 May, Beijing, China, pp. 21–24. [Google Scholar]
  • White D.J. (2009) Monitoring CO2 storage during EOR at the Weyburn-Midale Field, Leading Edge 28, 7, 838–842. [CrossRef] [Google Scholar]
  • White D.J. (2013) Seismic characterization and time-lapse imaging during seven years of CO2 flood in the Weyburn field, Saskatchewan, Canada, Int. J. Greenhouse Gas Control 16S, 78–94. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.