Dossier LES4ICE’18 : LES for Internal Combustion Engine Flows Conference
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Dossier LES4ICE’18 : LES for Internal Combustion Engine Flows Conference
Article Number 61
Number of page(s) 14
Published online 01 July 2019
  • Reitz R.D. (2013) Directions in internal combustion engine research, Combust. Flame 160, 1, 1–8. [Google Scholar]
  • Heywood J.B. (1988) Internal combustion engine fundamentals, McGraw-Hill, New York. [Google Scholar]
  • Wiedenhoefer J.F., Reitz R.D. (2003) Multidimensional modeling of the effects of radiation and soot deposition in heavy-duty diesel engines, SAE Trans. 112, 3, 784–804. [Google Scholar]
  • Yoshikawa T., Reitz R.D. (2009) Effect of radiation on diesel engine combustion and heat transfer, J. Therm. Sci. Technol. 4, 1, 86–97. [CrossRef] [Google Scholar]
  • Borman G., Nishiwaki K. (1987) Internal-combustion engine heat transfer, Prog. Energy Combust. Sci. 13, 1, 1–46. [Google Scholar]
  • Torregrosa J., Olmeda P.C., Romero C.A., Térmicos M., Valencia U.P.D.E., De Vera C. (2008) Revising engine heat transfer 1, Ann. Fac. Eng. Hunedoara 6, 3, 245–265. [Google Scholar]
  • Fernandez S.F., Paul C., Sircar A., Imren A., Haworth D.C., Roy S., Modest M.F. (2018) Soot and spectral radiation modeling for high-pressure turbulent spray flames, Combust. Flame 190, 402–415. [Google Scholar]
  • Paul C., Sircar A., Fernandez S.F., Imren A., Haworth D.C., Roy S.P., Ge W., Modest M.F. (2017) “Modeling radiative heat transfer and turbulence-radiation interactions in engines”, in U.S., Nat. Combust. Meet. 10, 1–6. [Google Scholar]
  • Paul C., Haworth D.C., Modest M.F. (2019) A simplified CFD model for spectral radiative heat transfer in high-pressure hydrocarbon-air combustion systems, Proc. Combust. Inst. 37, 4617–4624. [Google Scholar]
  • Modest M.F., Haworth D.C. (2016) Radiative heat transfer in turbulent combustion systems: Theory and applications, Springer, Berlin, Germany. [CrossRef] [Google Scholar]
  • Goldenstein C.S., Spearrin R.M., Jeffries J.B., Hanson R.K. (2017) Infrared laser-absorption sensing for combustion gases, Prog. Energy Combust. Sci. 60, 132–176. [Google Scholar]
  • Rein K.D., Sanders S.T., Lowry S.R., Jiang E.Y., Workman J.J. (2008) In-cylinder Fourier-transform infrared spectroscopy, Meas. Sci. Technol. 19, 4, 1–5. [Google Scholar]
  • Rein K., Sanders S., Bartula R. (2009) Interferometric techniques for crank-angle resolved measurements of gas spectra in engines, SAE Technical Paper (No. 2009-01-0863), 1–7. [Google Scholar]
  • Rein K.D., Sanders S.T. (2010) Fourier-transform absorption spectroscopy in reciprocating engines, Appl. Opt. 49, 25, 4728–4734. [CrossRef] [PubMed] [Google Scholar]
  • Sick V., Henrion L., Mazacioglu A., Gross M.C. (2018) Time-resolved infrared imaging and spectroscopy for engine diagnostics, in: 13th AVL Intl. Symp. on Propulsion Diagnostics Proceedings, AVL GmbH, Austria. [Google Scholar]
  • Schiffmann P., Reuss D.L., Sick V. (2018) Empirical investigation of spark-ignited flame-initiation cycle-to-cycle variability in a homogeneous charge reciprocating engine, Int. J. Engine Res. 19, 5, 491–508. [CrossRef] [Google Scholar]
  • Humphreys C.J., Paul E. (1970) Interferometric Wavelength Determinations in the First Spectrum of 136Xe, J. Opt. Soc. Am. 60, 10, 1302–1310. [Google Scholar]
  • Ma P.C., Greene M., Sick V., Ihme M. (2017) Non-equilibrium wall-modeling for internal combustion engine simulations with wall heat transfer, Int. J. Engine Res. 18, 15–25. [CrossRef] [Google Scholar]
  • Oude Nijeweme D.J., Kok J.B.W., Stone C.R., Wyszynski L. (2001) Unsteady in-cylinder heat transfer in a spark ignition engine: Experiments and modelling, Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 215, 6, 747–760. [CrossRef] [Google Scholar]
  • Herzberg G. (1945) Infrared and Raman spectra of polyatomic molecules, D. Van Nostrand Company, New York City. [Google Scholar]
  • Shekhawat Y., Haworth D.C., d’Adamo A., Berni F., Fontanesi S., Schiffmann P., Reuss D.L., Sick V. (2017) An experimental and simulation study of early flame development in a homogeneous-charge spark-ignition engine, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 72, 32. [Google Scholar]
  • Weller H., Greenshields C., de Rouvray C., OpenFoam. (2011) The OpenFOAM Foundation. [Online]. Available: [Google Scholar]
  • Paul C., Ferreyro-Fernandez S., Haworth D.C., Roy S., Modest M.F. (2019) A detailed modeling study of radiative heat transfer in a heavy-duty diesel engine, Combust. Flame 200, 325–341. [Google Scholar]
  • Rothman L.S., Gordon I.E., Barber R.J., Dothe H., Gamache R.R., Goldman A., Perevalov V.I., Tashkun S.A., Tennyson J. (2010) HITEMP, the high-temperature molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transf. 111, 15, 2139–2150. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.