Numerical methods and HPC
Open Access
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 73, 2018
Numerical methods and HPC
Article Number 52
Number of page(s) 22
Published online 14 November 2018
  • Dagum L., Menon R. (1998) OpenMP: an industry standard API for shared-memory programming, IEEE Comput. Sci. Eng. 5, 1, 46–55. [Google Scholar]
  • Sampson A., Baixo A., Ransford B., Moreau T., Yip J., Ceze L., Oskin M. (2015) Accept: A programmer-guided compiler framework for practical approximate computing, University of Washington Technical Report UW-CSE-15-01, p. 1. [Google Scholar]
  • Carbin M., Misailovic S., Rinard M.C. (2013) Verifying quantitative reliability for programs that execute on unreliable hardware, ACM SIGPLAN Notices 48, 33–52. [CrossRef] [Google Scholar]
  • Ansel J., Lok Wong Y., Chan C., Olszewski M., Edelman A., Amarasinghe S. (2011) Language and compiler support for auto-tuning variable-accuracy algorithms, in: Proceedings of the 9th Annual IEEE/ACM International Symposium on Code Generation and Optimization, pp. 85–96. [Google Scholar]
  • Burstedde C., Wilcox L.C., Ghattas O. (2011) p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput. 33, 1103–1133. [CrossRef] [MathSciNet] [Google Scholar]
  • Kirk B.S., Peterson J.W., Stogner R.H., Carey G.F. (2006) libMesh: A C++ Library for Parallel Adaptive Mesh Refinement/Coarsening Simulations, Eng. Comput. 22, 3–4, 237–254. [CrossRef] [Google Scholar]
  • Musser D.R., Derge G.J., Saini A. (2009) STL Tutorial and Reference Guide: C++ Programming with the Standard Template Library, 3rd edn., Addison-Wesley Professional, London, UK. [Google Scholar]
  • Kambatla K., Kollias G., Kumar V., Grama A. (2014) Trends in big data analytics, J. Parallel Distrib. Comput. 74, 7, 2561–2573. [CrossRef] [Google Scholar]
  • Mittal S. (2016) A survey of techniques for approximate computing, ACM Comput. Surv. (CSUR) 48, 4, 62. [Google Scholar]
  • Tornvist L., Vartia P., Vartia Y. (1985) How should relative changes be measured? Am Statist. 39, 43–46. [Google Scholar]
  • Hore A., Ziou D. (2010) Image quality metrics: Psnr vs. ssim, 20th International Conference on Pattern Recognition (ICPR), pp. 2366–2369. [Google Scholar]
  • Feynman R.P., Leighton R.B., Sands M. (2011) The Feynman lectures on physics, Vol. I: The new millennium edition: mainly mechanics, radiation, and heat, Basic Books. [Google Scholar]
  • Bishop C.M. (2006) Pattern Recognition and Machine Learning (Information Science and Statistics), Springer Verlag, Berlin, Heidelberg. [Google Scholar]
  • Feautrier P. (1992) Some efficient solutions to the affine scheduling problem. I. One-dimensional time, Int. J. Parallel Program. 21, 5, 313–347. [CrossRef] [Google Scholar]
  • Feautrier P. (1992) Some efficient solutions to the affine scheduling problem. II. multidimensional time, Int. J. Parallel Program. 21, 6, 389–420. [CrossRef] [Google Scholar]
  • Bastoul C. (2016) Mapping deviation: A technique to adapt or to guard loop transformation intuitions for legality, in: Proceedings of the 25th International Conference on Compiler Construction, Barcelona, Spain, pp. 229–239. [Google Scholar]
  • Grosser T., Groesslinger A., Lengauer C. (2012) Polly – performing polyhedral optimizations on a low-level intermediate representation, Parallel Process. Lett. 22, 1250010. [CrossRef] [Google Scholar]
  • Bastoul C. (2008) Extracting polyhedral representation from high level languages, Tech. Rep. Related to the Clan tool, LRI, Paris-Sud University. [Google Scholar]
  • Verdoolaege S., Grosser T. (2012) Polyhedral extraction tool, in: Second International Workshop on Polyhedral Compilation Techniques (IMPACT’12), Paris, France, pp. 1–16. [Google Scholar]
  • Bastoul C. (2004) Code generation in the polyhedral model is easier than you think, in: Proceedings of the 13th International Conference on Parallel Architectures and Compilation Techniques, pp. 7–16. [Google Scholar]
  • Quilleri F., Rajopadhye S., Wilde D. (2000) Generation of efficient nested loops from polyhedra, Int. J. Parallel Program. 28, 5, 469–498. [CrossRef] [Google Scholar]
  • Banerjee U. (2007) Loop transformations for restructuring compilers: the foundations, Springer Science & Business Media, Massachusetts, USA. [Google Scholar]
  • Strang G. (2009) Introduction to linear algebra, Vol. 4, Wellesley-Cambridge Press, Wellesley, MA. [Google Scholar]
  • Wolfe M. (1989) More iteration space tiling, in: Proceedings of the 1989 ACM/IEEE conference on Supercomputing, pp. 655–664. [Google Scholar]
  • Wolf M.E., Lam M.S. (1991) A data locality optimizing algorithm, ACM Sigplan Notices 26, 30–44. [CrossRef] [Google Scholar]
  • Verdoolaege S. (2010) isl: An integer set library for the polyhedral model, ICMS 6327, 299–302. [Google Scholar]
  • Kelly W., Maslov V., Pugh W., Rosser E., Shpeisman T., Wonnacott D. (1996) The omega calculator and library, version 1.1.0, College Park, MD, 20742:18 [Google Scholar]
  • Berger M.J., Colella P. (1989) Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys. 82, 64–84. [NASA ADS] [CrossRef] [Google Scholar]
  • Sampson A., Dietl W., Fortuna E., Fortuna E., Gnanapragasam D., Ceze L., Grossman D. (2011) Enerj: Approximate data types for safe and general low-power computation, in: Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ‘11, San Jose, California, USA, pp. 164–174. [Google Scholar]
  • Yeh T., Faloutsos P., Ercegovac M., Patel S., Reinman G. (2007) The art of deception: Adaptive precision reduction for area efficient physics acceleration, 40th Annual IEEE/ACM International Symposium on Microarchitecture, 394–406. [Google Scholar]
  • Sidiroglou-Douskos S., Misailovic S., Hoffmann H., Rinard M. (2011) Managing performance vs. accuracy trade-offs with loop perforation, in: Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of software engineering, pp. 124–134. [Google Scholar]
  • Misailovic S., Roy D.M., Rinard M.C. (2011) Probabilistically accurate program transformations, in: Yahav E. (eds), Static Analysis, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 316–333. [CrossRef] [Google Scholar]
  • Rinard M. (2006) Probabilistic accuracy bounds for fault-tolerant computations that discard tasks, in: Proceedings of the 20th Annual International Conference on Supercomputing, ICS ’06, ACM, Cairns, Queensland, Australia, pp. 324–334. [CrossRef] [Google Scholar]
  • Rahimi A., Benini L., Gupta R.K. (2013) Spatial memoization: Concurrent instruction reuse to correct timing errors in simd architectures, IEEE Trans. Circuits Syst. II: Express Briefs 60, 12, 847–851. [CrossRef] [Google Scholar]
  • Michie D. (1968) “memo” functions and machine learning, Nature 218, 5136, 19. [CrossRef] [Google Scholar]
  • Ansel J., Chan C., Wong Y.L., Olszewski M., Zhao Q., Edelman A., Amarasinghe S. (2009) PetaBricks: a language and compiler for algorithmic choice, Vol. 44, ACM. [Google Scholar]
  • Schmitt M., Helluy P., Bastoul C., Bastoul C. (2017) Adaptive code refinement: A compiler technique and extensions to generate self-tuning applications, HiPC 2017 – 24th International Conference on High Performance Computing, Data, and Analytics, Jaipur, India, pp. 1–10. [Google Scholar]
  • Bastoul C., Cohen A., Girbal S., Sharma S., Temam O. (2004) Putting polyhedral loop transformations to work, in: Rauchwerger L. (ed.), Languages and Compilers for Parallel Computing, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 209–225. [CrossRef] [Google Scholar]
  • Verdoolaege S., Grosser T. (2012) Polyhedral extraction tool, Second International Workshop on Polyhedral Compilation Techniques (IMPACT’12), Paris, France. [Google Scholar]
  • Schrijver A. (1998) Theory of linear and integer programming, John Wiley & Sons. [Google Scholar]
  • Bondhugula U., Hartono A., Ramanujam J., Sadayappan P. (2008) A practical automatic polyhedral parallelizer and locality optimizer, SIGPLAN Notices 43, 6, 101–113. [CrossRef] [Google Scholar]
  • Pouchet L.-N., Bastoul C., Cohen A., Cavazos J. (2008) Iterative optimization in the polyhedral model: Part II. Multidimensional time, ACM SIGPLAN Notices 43, 90–100. [CrossRef] [Google Scholar]
  • Bielecki W., Palkowski M. (2016) Tiling of arbitrarily nested loops by means of the transitive closure of dependence graphs, Int. J. Appl. Math. Comput. Sci. (AMCS) 26, 4, 919–939. [CrossRef] [Google Scholar]
  • Stam J. (1999) Stable fluids, in: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ‘99, ACM Press/Addison-Wesley Publishing Co, New York, NY, USA, pp. 121–128. [CrossRef] [Google Scholar]
  • Stam J. (2003) Real-time fluid dynamics for games, in: Proceedings of the Game Developer Conference, 25. [Google Scholar]
  • Oskooi A.F., Roundy D., Ibanescu M., Bermel P., Joannopoulos J.D., Johnson S.G. (2010) Meep: A flexible free-software package for electromagnetic simulations by the FDTD method, Comput. Phys. Commun. 181, 3, 687–702. [CrossRef] [Google Scholar]
  • Wm Gosper R. (1984) Exploiting regularities in large cellular spaces, Phys. D: Nonlinear Phenom. 10, 1–2, 75–80. [CrossRef] [Google Scholar]
  • Meng J., Chakradhar S., Raghunathan A. (2009) Best-effort parallel execution framework for recognition and mining applications, IPDPS’09, pp. 1–12. [Google Scholar]
  • Schmitt M. (2017) ACR compiler and runtime, [Google Scholar]
  • Campanoni S., Holloway G., Wei G.-Y., Brooks D.M. (2015) HELIX-UP: Relaxing program semantics to unleash parallelization, in: IEEE/ACM CGO, San Francisco, USA, pp. 235–245. [Google Scholar]
  • Byna S., Meng J., Raghunathan A., Chakradhar S., Cadambi S. (2010) Best-effort semantic document search on gpus, in: Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics Processing Units, pp. 86–93. [Google Scholar]
  • Samadi M., Lee J., Jamshidi A., Anoushe Hormati D., Mahlke S. (2013) Sage: Self-tuning approximation for graphics engines, in: MICRO’13 IEEE/ACM Intl. Symp. on Microarchitecture, Davis, California, pp. 13–24. [Google Scholar]
  • Chippa V.K., Mohapatra D., Raghunathan A., Roy K., Chakradhar S.T. (2010) Scalable effort hardware design: Exploiting algorithmic resilience for energy efficiency, in: Proceedings of the 47th Design Automation Conference, pp. 555–560. [Google Scholar]
  • Fang Y., Li H.W., Li X.W. (2012) Softpcm: Enhancing energy efficiency and lifetime of phase change memory in video applications via approximate write, in: Test Symposium (ATS), 2012 IEEE 21st Asian, pp. 131–136. [Google Scholar]
  • Sampson A., Nelson J., Strauss K., Ceze L. (2014) Approximate storage in solid-state memories, ACM Trans. Comput. Syst. 32, 3, 1–9. [CrossRef] [Google Scholar]
  • Misailovic S., Carbin M., Achour S., Qi Z.C., Rinard M.C. (2014) Chisel: Reliability-and accuracy-aware optimization of approximate computational kernels, ACM SIG-PLAN Notices 49, 309–328. [CrossRef] [Google Scholar]
  • Hoffmann H., Sidiroglou S., Carbin M., Carbin M., Misailovic S., Agarwal A., Rinard M.C. (2011) Dynamic knobs for responsive power-aware computing, in: Proceedings of the Sixteenth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS XVI, ACM, Newport Beach, California, USA, pp. 199–212. [CrossRef] [Google Scholar]
  • Samadi M., Jamshidi D.A., Lee J., Mahlke S. (2014) Paraprox: Pattern-based approximation for data parallel applications, in: Proceedings of the 19th International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’14, ACM, Salt Lake City, Utah, USA, pp. 3550. [Google Scholar]
  • Chippa V.K., Chakradhar S.T., Roy K., Raghunathan A. (2013) Analysis and characterization of inherent application resilience for approximate computing, in: Proceedings of the 50th Annual Design Automation Conference, p. 113. [Google Scholar]
  • Baek W., Chilimbi T.M. (2010) Green: A framework for supporting energy-conscious programming using controlled approximation, in: Proceedings of the 31st ACM SIG-PLAN Conference on Programming Language Design and Implementation, PLDI ’10, ACM, Toronto, Ontario, Canada, pp. 198–209. [CrossRef] [Google Scholar]
  • Bornholt J., Mytkowicz T., McKinley K.S. (2014) Uncertain: A first-order type for uncertain data, in: Proceedings of the 19th International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’14, ACM, Salt Lake City, Utah, USA, pp. 51–66. [CrossRef] [Google Scholar]
  • Sorber J., Kostadinov A., Garber M., Brennan M., Corner M.D., Berger E.D. (2007) Eon: A language and runtime system for perpetual systems, in: Proceedings of the 5th International Conference on Embedded Networked Sensor Systems, SenSys ‘07, ACM, Sydney, Australia, pp. 161–174. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.