

 Fig. 3.

 [image: thumbnail]

							Parallel reduction of an array using the OpenMP directives. “omp parallel” states that the following loop can safely be parallelized and the “reduction(+:a)” indicates that we want to do a reduction using the addition operator on the variable “a”. The final result will be stored in the said variable.

						

 Fig. 5.

 [image: thumbnail]

							Code generated from polyhedral representation. The code in Figure 4 generated back from the polyhedral model without code transformation. The code generator CLooG did lift the control statement to the upper loop nest dimensions with modifications to the loop bounds.

						

 Fig. 7.

 [image: thumbnail]

								A loop nest iteration and data domains. A loop nest and its accompanying iteration domain (middle) and data domain (right). The data domain is subdivided in two cells of four points each. The data and iteration points associated to a same cell are represented with the same color.

							

 Fig. 10.

 [image: thumbnail]

							
								Loop Dependency. Example of loop carried dependency between iteration instances with two valid schedules. A point represents the execution of one statement instance. For the dependence graph, an arrow represents a dependence: some instances have to be executed before the target instances. For the schedules, the arrows represent the execution order. Schedule 1 exhibits the maximum parallelism at iteration level whereas schedule 2 focuses on parallelism at the cell level. The code generated with the first schedule requires more cell-transition checks than it would with the second one.

						

 Fig. 11.

 [image: thumbnail]

							
								From polyhedral to code. CLooG polyhedral code generation algorithm applied on the union of two alternative statement domains. The dimensions are processed one after the other recursively. The first dimension to be generated is the outermost loop (left). Then the second loop dimension is generated on the last two domains (center and right). The algorithm stops when there is no remaining domain to generate.

						

 Fig. 12.

 [image: thumbnail]

							ACR dynamic runtime optimizer. Dynamic runtime used to generate optimized strategies application at runtime.

						

 Fig. 13.

 [image: thumbnail]

							Code Generation Approaches. This figure presents the result of different code generation approaches for the original situation depicted in part (a). The top of the figure shows the code’s iteration domain, where white points are executed while black points are not. Arrows represent the execution ordering. Under the iteration domain is a representation of the grid state. The approximation strategy is the following: in the black grid cell, no iteration is executed, in the grey grid cells, one iteration of the k-loop is executed and on the white grid cell, two iterations of the k-loop are executed. Parts (b), (c) and (d) show how the various approaches implement equivalent versions of the approximated code: with an internal guard for guarded, perfectly matching the situation for dynamically or on a grid-cell basis for statically.

						

 Fig. 14.

 [image: thumbnail]

							Precision computation for the raw, versioning and stencil validity checks. The domain consists of three monitored cells. The precision of the optimized kernel is also visible. A vertex from one cell to another represents a value dependency. If multiple vertices enter a same destination cell, the lowest of the parent’s values is chosen. The stencil check requires an intermediate step because the neighbor’s values are also considered to compute a cell precision. The value from the neighbors is incremented by one (green dashed lines) before they enter the intermediate cell. This increment limits the influence of the neighbors when the stencil check is used.

						

 Fig. 15.

 [image: thumbnail]

							A Gauss-Seidel iterative solver of linear equations. Three levels of approximation are used: low, medium and high which map to modified number of iterations of the solver. The number of iterations of the solver is lowered by the runtime in the cells where the density is low or medium.

						

 Fig. 16.

 [image: thumbnail]

							Kernel updating the electric field in a 2D space of a FDTD simulation. The kernel is annotated with ACR compiler directives to disable the electric field computation whenever the magnetic field is close to null for all the values inside an ACR cell.

						

 OEBPS/ogst180066-eq9.gif

OEBPS/ogst180066-fig9_small.jpg

OEBPS/ogst180066-eq4.gif

OEBPS/ogst180066-eq6.gif
iy L

OEBPS/ogst180066-fig14_small.jpg

OEBPS/ogst180066-eq7.gif

OEBPS/ogst180066-eq2.gif

OEBPS/ogst180066-fig8_small.jpg

OEBPS/ogst180066-fig1.jpg
Step 700:
Magnetic field
-+

Saved

Step 1300:

OEBPS/ogst180066-fig2.jpg

OEBPS/ogst180066-fig10.jpg
J
Goee
co'se

>0
Gro|0®
2

i
Schedule 1

O Cell, @ Cell;

i
Schedule 2

@ Celly

OEBPS/ogst180066-fig12.jpg
4. Alternative 6. Binary
code executable

[Polyhedral codegen] [Compilation thread]
3. Request o+ :‘\ / 5. Request

code Socie . code

generation eeeee [C oordinator threadj compilation

7. Provide
new

2. Cell .
state function
(Monitor thread}— ‘ Main thread

1. Monitor Simulation
update

OEBPS/ogst180066-fig16.jpg
)

17

19

unsigned char hz_to_monitor (double hzval) {
if (hzval > 0.1 || hzval < -0.1) {
return 1;
} else {
return 0;
}
}

#pragma acr grid(J3/5)

#pragma acr monitor(Hz[i][j], min, hz_to_monitor)

#pragma acr alternative low(zero-compute)
#pragma acr strategy dynamic(l, low)
#pragma acr strategy static([S,J] -> {[i,]j]

S+J/4 >= i >= S-J/4 and \\

31/4 >= j >= 1/4}, low)
#pragma acr checker-select(versioning,async)
for (int 1 = 0; i < I-1; ++1i) {
for (int j = 0; j < J-1; ++j) {
if (j == 0) // Borders
Ey[i+1][0] += -alpha_Ey *
(Hz[i+11[0] - Hz[i]1[01);
if (i == 0 & j > 1) // Borders
Ex[0][j] += alpha_Ex *
(Hz[0]1[j] - Hz[0][j-11);

Ex[i+1][j+1] += alpha_Ex *

(Hz[i+1][j+1] - Hz[i+11[j1);

Ey[i+1][j+1] += -alpha_Ey *

(Hz[i+1][j+1] - Hz[i][j+11);

