Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 73, 2018
Article Number 51
Number of page(s) 17
DOI https://doi.org/10.2516/ogst/2018039
Published online 30 October 2018
  • Wang S., Civan F. (2001) Productivity decline of vertical and horizontal wells by asphaltene deposition in petroleum reservoirs, SPE International Symposium on Oilfield Chemistry, Society of Petroleum Engineers. [Google Scholar]
  • Hirschberg A., DeJong L.N.J., Schipper B.A., Meijer J.G. (1984) Influence of temperature and pressure on asphaltene flocculation, Soc. Petrol. Eng. J. 24, 3, 283–293. [CrossRef] [Google Scholar]
  • Burke N.E., Hobbs R.E., Kashou S.F. (1990) Measurement and Modeling of Asphaltene Precipitation (includes associated paper 23831), J. Petrol. Technol. 42, 11, 1440–1446. [CrossRef] [Google Scholar]
  • De Boer R.B., Leerlooyer K., Eigner M.R.P., Van Bergen A.R.D (1995) Screening of crude oils for asphalt precipitation: theory, practice, and the selection of inhibitors, SPE Prod. Facil. 10, 1, 55–61. [CrossRef] [Google Scholar]
  • Andersen S.I., Speight J.G. (1999) Thermodynamic models for asphaltene solubility and precipitation, J. Petrol. Sci. Eng. 22, 1, 53–66. [CrossRef] [Google Scholar]
  • Thomas F., Bennion D.B., Bennion D.W., Hunter B.E. (1992) Experimental and theoretical studies of solids precipitation from reservoir fluid, J. Can. Petrol. Technol. 31, 1, 35–45. [Google Scholar]
  • Leontaritis K.J. (2005) Asphaltene near-well-bore formation damage modeling, J. Energy Resour. Technol. 127, 3, 191–200. [CrossRef] [Google Scholar]
  • Peramanu S., Clarke P.F., Pruden B.B. (1999) Flow loop apparatus to study the effect of solvent, temperature and additives on asphaltene precipitation, J. Petrol. Sci. Eng. 23, 2, 133–143. [CrossRef] [Google Scholar]
  • Zheng C., Zhu M., Zhou W., Zhang D. (2017) A Preliminary Investigation Into the Characterization of Asphaltenes Extracted From an Oil Sand and Two Vacuum Residues From Petroleum Refining Using Nuclear Magnetic Resonance, DEPT, and MALDI-TOF, J. Energy Resour. Technol. 139, 3, 032905. [CrossRef] [Google Scholar]
  • Davarpanah L., Vahabzadeh F., Dermanaki A. (2015) Structural study of asphaltenes from Iranian heavy crude oil, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 70, 6, 1035–1049. [CrossRef] [Google Scholar]
  • Kohse B.F., Kohse B.F., Nghiem L.X. (2004) Modelling asphaltene precipitation and deposition in a compositional reservoir simulator, SPE/DOE Symposium on Improved Oil Recovery, Society of Petroleum Engineers. [Google Scholar]
  • Fukumoto A., Dalmazzone C., Frot D., Barré L., Noïk C. (2018) Characterization of Complex Crude Oil Microemulsions-DSC Contribution, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 3. [CrossRef] [Google Scholar]
  • Mitchell D.L., Speight J.G. (1973) The solubility of asphaltenes in hydrocarbon solvents, Fuel 52, 2, 149–152. [CrossRef] [Google Scholar]
  • Mohammed S.A.A., Arisaka K., Kumazaki Y. (1998) Integrated analysis of asphaltene deposition from field production data and laboratory experiments, Abu Dhabi International Petroleum Exhibition and Conference, Society of Petroleum Engineers. [Google Scholar]
  • Almehaideb R.A. (2004) Asphaltene precipitation and deposition in the near wellbore region: a modeling approach, J. Petrol. Sci. Eng. 42, 2, 157–170. [CrossRef] [Google Scholar]
  • Pedersen K.S., Christensen P.L., Shaikh J.A. (2014) Phase behavior of petroleum reservoir fluids, CRC Press: USA. [CrossRef] [Google Scholar]
  • Pan H., Firoozabadi A. (1997) Thermodynamic micellization model for asphaltene precipitation from reservoir crudes at high pressures and temperatures, SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Pan H., Firoozabadi A. (1998) A thermodynamic micellization model for asphaltene precipitation: Part I: Micellar size and growth, SPE Prod. Facil. 13, 2, 118–127. [CrossRef] [Google Scholar]
  • Nghiem L.X., Coombe D.A. (1997) Modelling asphaltene precipitation during primary depletion, SPE J. 2, 2, 170–176. [CrossRef] [Google Scholar]
  • Nghiem L.X., Coombe D.A., Ali S. (1998) Compositional simulation of asphaltene deposition and plugging, SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Kohse B.F., Nghiem L.X., Maeda H., Ohno K. (2000) Modelling phase behaviour including the effect of pressure and temperature on asphaltene precipitation, SPE Asia Pacific Oil and Gas Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Wang S., Civan F. (2005) Modeling formation damage by asphaltene deposition during primary oil recovery, J. Energy Resour. Technol. 127, 4, 310–317. [CrossRef] [Google Scholar]
  • Civan F. (1995) Modeling and simulation of formation damage by organic deposition, Proceedings of the First International Symposium on Colloid Chemistry in Oil Production: Asphaltenes and Wax Deposition, ISCOP’95, Rio de Janeiro, Brazil, November 26–29, pp. 102–107. [Google Scholar]
  • Mansoori G.A. (1997) Modeling of asphaltene and other heavy organic depositions, J. Petrol. Sci. Eng. 17, 1, 101–111. [CrossRef] [Google Scholar]
  • Hutin A., Argillier J.F., Langevin D. (2016) Influence of pH on oil-water interfacial tension and mass transfer for asphaltenes model oils. Comparison with crude oil behavior, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 71, 4, 58. [CrossRef] [Google Scholar]
  • Manshad A.K., Rostami H., Rezaei H., Hosseini S.M. (2015) Application of artificial neural network-particle swarm optimization algorithm for prediction of asphaltene precipitation during gas injection process and comparison with Gaussian process algorithm, J. Energy Resour. Technol. 137, 6, 062904. [CrossRef] [Google Scholar]
  • Bahrami P., Kharrat R., Mahdavi S., Firoozinia H. (2015) Prediction of the gas injection effect on the asphaltene phase envelope, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 70, 6, 1075–1086. [CrossRef] [Google Scholar]
  • Srivastava R.K., Huang S.S. (1997) Asphaltene deposition during CO2 flooding: a laboratory assessment, SPE Production Operations Symposium, Society of Petroleum Engineers. [Google Scholar]
  • Wang S., Civan F. (2005) Model-assisted analysis of simultaneous paraffin and asphaltene deposition in laboratory core tests, J. Energy Resour. Technol. 127, 4, 318–322. [CrossRef] [Google Scholar]
  • Papadimitriou N., Romanos G.E., Charalambopoulou G.C., Kainourgiakis M.E., Katsaros F.K., Stubos A.K. (2007) Experimental investigation of asphaltene deposition mechanism during oil flow in core samples, J. Petrol. Sci. Eng. 57, 3, 281–293. [CrossRef] [Google Scholar]
  • Mousavi S., et al. (2012) Comparison of ultrasonic wave radiation effects on asphaltene aggregation in toluene–pentane mixture between heavy and extra heavy crude oils, J. Energy Resour. Technol. 134, 2, 022001. [CrossRef] [Google Scholar]
  • Solaimany-Nazar A.R., Zonnouri A. (2011) Modeling of asphaltene deposition in oil reservoirs during primary oil recovery, J. Petrol. Sci. Eng. 75, 3, 251–259. [CrossRef] [Google Scholar]
  • Kazemzadeh Y., Malayeri M.R., Riazi M., Parsaei R. (2015) Impact of Fe3O4 nanoparticles on asphaltene precipitation during CO2 injection, J. Nat. Gas Sci. Eng. 22, 227–234. [CrossRef] [Google Scholar]
  • Kashefi S., Lotfollahi M.N., Shahrabadi A. (2018) Investigation of asphaltene adsorption onto zeolite beta nanoparticles to reduce asphaltene deposition in a silica sand pack, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 2. [CrossRef] [Google Scholar]
  • Rezakazemi M., Mirzaei S., Asghari M., Ivakpour J. (2017) Aluminum oxide nanoparticles for highly efficient asphaltene separation from crude oil using ceramic membrane technology, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 72, 6, 34. [CrossRef] [Google Scholar]
  • Nghiem L., Hassam M.S., Nutakki R., George A.E.D. (1993) Efficient modelling of asphaltene precipitation, SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Peng D.-Y., Robinson D.B. (1976) A new two-constant equation of state, Ind. Eng. Chem. Fundam. 15, 1, 59–64. [CrossRef] [Google Scholar]
  • Whitson C.H. (1983) Characterizing hydrocarbon plus fractions, Soc. Petrol. Eng. J. 23, 4, 683–694. [CrossRef] [Google Scholar]
  • Lee B., Kesler M. (1980) Improve vapor-pressures prediction, Hydrocarbon Processing 60, 7, 163–167. [Google Scholar]
  • Twu C.H. (1984) An internally consistent correlation for predicting the critical properties and molecular weights of petroleum and coal-tar liquids, Fluid Phase Equilib. 16, 2, 137–150. [CrossRef] [Google Scholar]
  • Danesh A. (1998) PVT and phase behaviour of petroleum reservoir fluids, Vol. 47, Elsevier: USA. [Google Scholar]
  • Chueh P.L., Prausnitz J. (1967) Vapor-liquid equilibria at high pressures: Calculation of partial molar volumes in nonpolar liquid mixtures, AIChE J. 13, 6, 1099–1107. [CrossRef] [Google Scholar]
  • Ali M., Islam M. (1998) The effect of asphaltene precipitation on carbonate-rock permeability: an experimental and numerical approach, SPE Prod. Facil. 13, 3, 178–183. [CrossRef] [Google Scholar]
  • Minssieux L., Nabzar L., Chauveteau G., Longeron D., Bensalem R. (1998) Permeability damage due to asphaltene deposition: Experimental and modeling aspects, Revue de l’Institut Français du Pétrole 53, 3, 313–327. [Google Scholar]
  • Civan F., Knapp R.M., Ohen H.A. (1989) Alteration of permeability by fine particle processes, J. Petrol. Sci. Eng. 3, 1–2, 65–79. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.