Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 73, 2018
Article Number 53
Number of page(s) 11
DOI https://doi.org/10.2516/ogst/2018051
Published online 14 November 2018
  • Belytschko T., Black T. (2015) Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Methods Eng. 45, 5, 601–620. [CrossRef] [Google Scholar]
  • Biot M.A. (1941) General theory of three-dimensional consolidation, J. Appl. Phys. 12, 2, 155–164. [CrossRef] [Google Scholar]
  • Biot M.A. (2004) Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys. 26, 2, 182–185. [CrossRef] [MathSciNet] [Google Scholar]
  • Chen H.Y., Teufel L.W., Lee R.L. (1995) Coupled Fluid Flow and Geomechanics in Reservoir Study – I. Theory and Governing Equations, IEEE Systems Conference, Society of Petroleum Engineers. [Google Scholar]
  • Delorme M., Daniel J.-M., Kada-Kloucha C., Khvoenkova N., Schueller S., Souque C. (2013a) Reservoir Stimulation and Induced Microseismic Events on 3D Discrete Fracture Network for Unconventional Reservoirs, Unconventional Resources Technology Conference. [Google Scholar]
  • Delorme M., Mota R.O., Khvoenkova N., Fourno A., Nœtinger B. (2013b) A methodology to characterize fractured reservoirs constrained by statistical geological analysis and production: a real field case study, Geol. Soc. London Spec. Publ. 374, SP374-14. [Google Scholar]
  • Detournay E. (1990) A Poroelastic PKN Hydraulic Fracture Model Based on an Explicit Moving Mesh Algorithm, J. Energy Resour. Technol 112, 4, 224–230. [CrossRef] [Google Scholar]
  • Faivre M., Paul B., Golfier F., Giot R., Massin P., Colombo D. (2016) 2D coupled HM-XFEM modeling with cohesive zone model and applications to fluid-driven fracture network, Eng. Fract. Mech. 159, 115–143. [CrossRef] [Google Scholar]
  • Guo T., Zhang S., Zou Y., Xiao B. (2015a) Numerical simulation of hydraulic fracture propagation in shale gas reservoir, J. Nat. Gas Sci. Eng. 26, 847–856. [CrossRef] [Google Scholar]
  • Guo T., Zhang S., Ge H., Wang X., Lei X., Xiao B. (2015b) A new method for evaluation of fracture network formation capacity of rock, Fuel 140, 778–787. [CrossRef] [Google Scholar]
  • Guo T., Qu Z., Gong D., Lei X., Liu M. (2016) Numerical simulation of directional propagation of hydraulic fracture guided by vertical multi-radial boreholes, Journal of Natural Gas Science & Engineering 35, 175–188. [CrossRef] [Google Scholar]
  • Guo T., Li Y., Ding Y., Qu Z., Gai N., Rui Z. (2017) Evaluation of acid fracturing treatments in shale formation, Energy Fuels 31, 10, 10479–10489. [CrossRef] [Google Scholar]
  • Ju Y., Liu P., Chen J., Yang Y., Ranjith P.G. (2016) CDEM-based analysis of the 3D initiation and propagation of hydrofracturing cracks in heterogeneous glutenites, J. Nat. Gas Sci. Eng. 35, 614–623. [CrossRef] [Google Scholar]
  • Li G., Tang C.A., Li L.C. (2011) Three-dimensional micro flow-stress-damage (FSD) model and application in hydraulic fracturing in brittle and heterogeneous rocks, Key Eng. Mater. 452–453, 8, 581–584. [Google Scholar]
  • Li L., Meng Q., Wang S., Li G., Tang C. (2013) A numerical investigation of the hydraulic fracturing behaviour of conglomerate in glutenite formation, Acta Geotech. 8, 6, 597–618. [CrossRef] [Google Scholar]
  • Li L.C., Tang C.A., Li G. (2012) Numerical simulation of 3D hydraulic fracturing based on an improved flow-stress-damage model and a parallel FEM technique, Rock Mech. Rock Eng. 45, 5, 801–818. [Google Scholar]
  • Liu H.Y., Kou S.Q., Lindqvist P.A. (2004) Numerical simulation of the fracture process in cutting heterogeneous brittle material, Int. J. Rock Mech. Min. Sci. 41, 3, 14–19. [CrossRef] [Google Scholar]
  • Ma X., Zou Y., Li N., Chen M., Zhang Y., Liu Z. (2017) Experimental study on the mechanism of hydraulic fracture growth in a glutenite reservoir, J. Struct. Geol. 97, 37–47. [CrossRef] [Google Scholar]
  • Meng Q.M., Zhang S.C., Guo X.M., Chen X.H., Zhang Y. (2010) A primary investigation on propagation mechanism for hydraulic fractures in glutenite formation, J. Oil Gas Technol. 32, 4, 119–123. [Google Scholar]
  • Moës Nicolas, Dolbow J., Belytschko T. (2015) A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng. 46, 1, 131–150. [Google Scholar]
  • Olson J.E. (2008) Multi-fracture propagation modeling: Applications to hydraulic fracturing in shales and tight gas sands, American Rock Mechanics Association. [Google Scholar]
  • Olson J.E., Taleghani A.D. (2009) Modeling simultaneous growth of multiple hydraulic fractures and their interaction with natural fractures. Society of Petroleum Engineers, DOI: 10.2118/119739-MS. [Google Scholar]
  • Paul B., Ndeffo M., Massin P., Moës N. (2017) An integration technique for 3D curved cracks and branched discontinuities within the extended finite element method, Finite Elem. Anal. Des. 123, 19–50. [CrossRef] [Google Scholar]
  • Rahman M.M., Aghighi M.A., Rahman S.S., Ravoof S.A. (2009) Interaction between induced hydraulic fracture and pre-existing natural fracture in a poro-elastic environment: Effect of pore pressure change and the orientation of natural fractures, Society of Petroleum Engineers. [Google Scholar]
  • Rui Z., Wang X., Zhang Z., Lu J., Chen G., Zhou X., Patil S. (2018) A realistic and integrated model for evaluating oil sands development with steam assisted gravity drainage technology in Canada, Appl. Energy 213, 76–91. [CrossRef] [Google Scholar]
  • Tian Y., Tan C., Wan Z., Qi F. (2001) Coupling analysis of seepage and stresses in rock failure process, Chin. J. Geotech. Eng. 23, 4, 489–493. [Google Scholar]
  • Weibull W. (1951) A statistical distribution function of wide applicability, J. Appl. Mech. 13, 2, 293–297. [Google Scholar]
  • Weng X., Kresse O., Cohen C.E., Wu R., Gu H. (2011) Modeling of Hydraulic Fracture Network Propagation in a Naturally Fractured Formation, Society of Petroleum Engineers. DOI: 10.2118/140253-MS. [Google Scholar]
  • Yang T.H., Tham L.G., Tang C.A., Leng X.F., Li L.C. (2002) Influence of heterogeneity on hydraulic fracturing in rocks, Chin. J. Geotech. Eng. 24, 6, 724–728. [Google Scholar]
  • Yang T.H., Xu T., Liu H.Y., Tang C.A., Shi B.M., Yu Q.X. (2011) Stress-damage-flow coupling model and its application to pressure relief coal bed methane in deep coal seam, Int. J. Coal Geol. 86, 4, 357–366. [CrossRef] [Google Scholar]
  • Zhao C. (2014) 3D fracturing network optimization techniques for horizontal wells in sandstone-conglomerate formations, Petrol. Drill. Tech. 5, 95–99. [Google Scholar]
  • Zhao Y.Z., Qu L.Z., Wang X.Z., Cheng Y.F., Shen H.C. (2007) Simulation experiment on prolongation law of hydraulic fracture for different lithologic formations, J. China Univ. Petrol. 31, 3, 63–66. [Google Scholar]
  • Zhao Z., Guo J., Ma S. (2015) The experimental investigation of hydraulic fracture propagation characteristics in glutenite formation, Adv. Mater. Sci. Eng. 2, 1–5. [CrossRef] [Google Scholar]
  • Zhu H., Zhao X., Guo J., Jin X., An F., Wang Y., Lai X. (2015) Coupled flow-stress-damage simulation of deviated-wellbore fracturing in hard-rock, J. Nat. Gas Sci. Eng. 26, 711–724. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.