Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 72, Number 6, November–December 2017
Article Number 34
Number of page(s) 9
DOI https://doi.org/10.2516/ogst/2017031
Published online 15 November 2017
  • Abdrabo A.E., Husein M.M. (2012) Method for converting demetallization products into dispersed metal oxide nanoparticles in heavy oil, Energy Fuels 26, 810-815. [CrossRef] [Google Scholar]
  • Abu Tarboush B.J., Husein M.M. (2012) Adsorption of asphaltenes from heavy oil onto in situ prepared NiO nanoparticles, J. Colloid Interface Sci. 378, 64-69. [CrossRef] [PubMed] [Google Scholar]
  • Ashtari M., Ashrafizadeh S.N., Bayat M. (2012) Asphaltene removal from crude oil by means of ceramic membranes, J. Petrol. Sci. Eng. 82–83, 44-49. [CrossRef] [Google Scholar]
  • Ashtari M., Carbognani L., Pereira-Almao P. (2016a) Asphaltenes aqueous conversion to humic and fulvic analogs via oxy-cracking, Energy Fuels 30, 5470-5482. [CrossRef] [Google Scholar]
  • Ashtari M., Carbognani Ortega L., Lopez-Linares F., Eldood A., Pereira-Almao P. (2016b) New pathways for asphaltenes upgrading using the oxy-cracking process, Energy Fuels 30, 4596-4608. [CrossRef] [Google Scholar]
  • ASTM (2000) D 6560-00; IP 143/01: Standard Test Method for Determination of Asphaltenes (heptaine Insolubles) in Crude Petroleum and Petroleum Products, American Society for Testing Materials (ASTM). [Google Scholar]
  • Baheri B., Shahverdi M., Rezakazemi M., Motaee E., Mohammadi T. (2015) Performance of PVA/NaA mixed matrix membrane for removal of water from ethylene glycol solutions by pervaporation, Chem. Eng. Commun. 202, 316-321. [CrossRef] [Google Scholar]
  • Bouhadda Y., Bormann D., Sheu E., Bendedouch D., Krallafa A., Daaou M. (2007) Characterization of Algerian Hassi-Messaoud asphaltene structure using Raman spectrometry and X-ray diffraction, Fuel 86, 1855-1864. [CrossRef] [Google Scholar]
  • Carlos da Silva Ramos A., Haraguchi L., Notrispe F.R., Loh W., Mohamed R.S. (2001) Interfacial and colloidal behavior of asphaltenes obtained from Brazilian crude oils, J. Petrol. Sci. Eng. 32, 201-216. [CrossRef] [EDP Sciences] [Google Scholar]
  • Farno E., Rezakazemi M., Mohammadi T., Kasiri N. (2014) Ternary gas permeation through synthesized pdms membranes: Experimental and CFD simulation basedon sorption-dependent system using neural network model, Polym. Eng. Sci. 54, 215-226. [CrossRef] [Google Scholar]
  • Fasihi M., Shirazian S., Marjani A., Rezakazemi M. (2012) Computational fluid dynamics simulation of transport phenomena in ceramic membranes for SO2 separation, Math. Comput. Model. 56, 278-286. [CrossRef] [Google Scholar]
  • Goual, L, Sedghi M., Zeng H., Mostowfi F., McFarlane R., Mullins O.C. (2011) On the formation and properties of asphaltene nanoaggregates and clusters by DC-conductivity and centrifugation, Fuel 90, 2480-2490. [CrossRef] [Google Scholar]
  • Hashemi F., Rowshanzamir S., Rezakazemi M. (2012) CFD simulation of PEM fuel cell performance: Effect of straight and serpentine flow fields, Math. Comput. Model. 55, 1540-1557. [CrossRef] [Google Scholar]
  • Kaminski T.J., Fogler H.S., Wolf N., Wattana P., Mairal A. (2000) Classification of asphaltenes via fractionation and the effect of heteroatom content on dissolution kinetics, Energy Fuels 14, 25-30. [CrossRef] [Google Scholar]
  • Marjani A., Rezakazemi M., Shirazian S. (2011) Vapor pressure prediction using group contribution method, Orient. J. Chem. 27, 1331-1335. [Google Scholar]
  • Marjani A., Rezakazemi M., Shirazian S. (2012) Simulation of methanol production process and determination of optimum conditions, Orient. J. Chem. 28, 145-151. [CrossRef] [Google Scholar]
  • Mousavi-Dehghani S.A., Riazi M.R., Vafaie-Sefti M., Mansoori G.A. (2004) An analysis of methods for determination of onsets of asphaltene phase separations, J. Petrol. Sci. Eng. 42, 145-156. [CrossRef] [Google Scholar]
  • Nassar N.N., (2010) Asphaltene adsorption onto alumina nanoparticles: kinetics and thermodynamic studies, Energy Fuels 24, 4116-4122. [CrossRef] [Google Scholar]
  • Rezakazemi M., Dashti A., Asghari M., Shirazian S. (2017a) H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS, Int. J. Hydrogen Energy 42, 15211-15225. [CrossRef] [Google Scholar]
  • Rezakazemi M., Ebadi Amooghin A., Montazer-Rahmati M.M., Ismail A.F., Matsuura T. (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions, Prog. Polym. Sci. 39, 817-861. [CrossRef] [Google Scholar]
  • Rezakazemi M., Ghafarinazari A., Shirazian S., Khoshsima A. (2013a) Numerical modeling and optimization of wastewater treatment using porous polymeric membranes, Polym. Eng. Sci. 53, 1272-1278. [CrossRef] [Google Scholar]
  • Rezakazemi M., Heydari I., Zhang Z. (2017b) Hybrid systems: Combining membrane and absorption technologies leads to more efficient acid gases (CO2 and H2S) removal from natural gas, J. CO2 Util. 18, 362-369. [Google Scholar]
  • Rezakazemi M., Iravaninia M., Shirazian S., Mohammadi T. (2013b) Transient computational fluid dynamics (CFD) modeling of pervaporation separation of aromatic/aliphatic hydrocarbon mixtures using polymer composite membrane, Polym. Eng. Sci. 53, 1494-1501. [CrossRef] [Google Scholar]
  • Rezakazemi M., Marjani A., Shirazian S. (2013c) Development of a group contribution method based on UNIFAC Groups for the estimation of vapor pressures of pure hydrocarbon compounds, Chem. Eng. Technol. 36, 483-491. [CrossRef] [Google Scholar]
  • Rezakazemi M., Mohammadi T. (2013) Gas sorption in H2-selective mixed matrix membranes: Experimental and neural network modeling, Int. J. Hydrogen Energy 38, 14035-14041. [CrossRef] [Google Scholar]
  • Rezakazemi M., Niazi Z., Mirfendereski M., Shirazian S., Mohammadi T., Pak A. (2011a) CFD simulation of natural gas sweetening in a gas-liquid hollow-fiber membrane contactor, Chem. Eng. J. 168, 1217-1226. [CrossRef] [Google Scholar]
  • Rezakazemi M., Razavi S., Mohammadi T., Nazari A.G. (2011b) Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA–APTEOS/TEOS nanocomposite membranes by means of expert systems, J. Membr. Sci. 379, 224-232. [CrossRef] [Google Scholar]
  • Rezakazemi M., Sadrzadeh M., Mohammadi T., Matsuura T. (2017c) Methods for the preparation of organic–inorganic nanocomposite polymer electrolyte membranes for fuel cells, in: Inamuddin, D., Mohammad, A., Asiri, A.M. (eds.), Organic–inorganic composite polymer electrolyte membranes: preparation, properties, and fuel cell applications, Springer International Publishing, Cham, pp. 311-325. [CrossRef] [Google Scholar]
  • Rezakazemi M., Shahidi K., Mohammadi T. (2012a) Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes, Int. J. Hydrogen Energy 37, 14576-14589. [CrossRef] [Google Scholar]
  • Rezakazemi M., Shahidi K., Mohammadi T. (2012b) Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane, Int. J. Hydrogen Energy 37, 17275-17284. [CrossRef] [Google Scholar]
  • Rezakazemi M., Shahidi K., Mohammadi T. (2015a) Synthetic PDMS composite membranes for pervaporation dehydration of ethanol, Desalin. Water Treat. 54, 1542-1549. [Google Scholar]
  • Rezakazemi M., Shahverdi M., Shirazian S., Mohammadi T., Pak A. (2011c) CFD simulation of water removal from water/ethylene glycol mixtures by pervaporation, Chem. Eng. J. 168, 60-67. [CrossRef] [Google Scholar]
  • Rezakazemi M., Shirazian S., Ashrafizadeh S.N. (2012c) Simulation of ammonia removal from industrial wastewater streams by means of a hollow-fiber membrane contactor, Desalination 285, 383-392. [CrossRef] [Google Scholar]
  • Rezakazemi M., Vatani A., Mohammadi T. (2015b) Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes, RSC Adv. 5, 82460-82470. [CrossRef] [Google Scholar]
  • Rezakazemi M., Vatani A., Mohammadi T. (2016) Synthesis and gas transport properties of crosslinked poly(dimethylsiloxane) nanocomposite membranes using octatrimethylsiloxy POSS nanoparticles, J. Natural Gas Sci. Eng. 30, 10-18. [CrossRef] [Google Scholar]
  • Rigolio M., Castiglioni C., Zerbi G., Negri F. (2001) Density functional theory prediction of the vibrational spectra of polycyclic aromatic hydrocarbons: effect of molecular symmetry and size on Raman intensities, J. Mol. Struct. 563–564, 79-87. [Google Scholar]
  • Rostamizadeh M., Rezakazemi M., Shahidi K., Mohammadi T. (2013) Gas permeation through H2-selective mixed matrix membranes: Experimental and neural network modeling, Int. J. Hydrogen Energy 38, 1128-1135. [CrossRef] [Google Scholar]
  • Shahverdi M., Baheri B., Rezakazemi M., Motaee E., Mohammadi T. (2013) Pervaporation study of ethylene glycol dehydration through synthesized (PVA-4A)/polypropylene mixed matrix composite membranes, Polym. Eng. Sci. 53, 1487-1493. [CrossRef] [Google Scholar]
  • Shirazian S., Marjani A., Rezakazemi M. (2012a) Separation of CO2 by single and mixed aqueous amine solvents in membrane contactors: fluid flow and mass transfer modeling, Eng. Comput. 28, 189-198. [CrossRef] [Google Scholar]
  • Shirazian S., Pishnamazi M., Rezakazemi M., Nouri A., Jafari M., Noroozi S., Marjani A. (2012b) Implementation of the finite element method for simulation of mass transfer in membrane contactors, Chem. Eng. Technol. 35, 1077-1084. [Google Scholar]
  • Shirazian S., Rezakazemi M., Marjani A., Moradi S. (2012c) Hydrodynamics and mass transfer simulation of wastewater treatment in membrane reactors, Desalination 286, 290-295. [CrossRef] [Google Scholar]
  • Shirazian S., Rezakazemi M., Marjani A., Rafivahid M.S. (2012d) Development of a mass transfer model for simulation of sulfur dioxide removal in ceramic membrane contactors, Asia-Pac. J. Chem. Eng. 7, 828-834. [CrossRef] [Google Scholar]
  • Vazquez D., Mansoori G.A. (2000) Identification and measurement of petroleum precipitates, J. Petrol. Sci. Eng. 26, 49-55. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.