Dossier: LES4ICE'16: LES for Internal Combustion Engine Flows Conference
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 72, Number 6, November–December 2017
Dossier: LES4ICE'16: LES for Internal Combustion Engine Flows Conference
Article Number 33
Number of page(s) 25
DOI https://doi.org/10.2516/ogst/2017025
Published online 10 November 2017
  • Dec J.E. (2009) Advanced compression-ignition engines-understanding the in-cylinder processes, Proc. Combust. Inst. 32, 2727-2742. [CrossRef] [Google Scholar]
  • Yao M., Zheng Z., Liu H. (2009) Progress and recent trends in homogeneous charge compression ignition (HCCI) engines, Progr. Energy Combust. Sci. 35, 398-437. [Google Scholar]
  • Gan S., Ng H.K., Pang K.M. (2011) Homogeneous charge compression ignition (HCCI) combustion: implementation and effects on pollutants in direct injection diesel engines, Appl. Energy 88, 559567. [Google Scholar]
  • Daw C.S., Wagner R.M., Edwards K.D., Green Jr. J.B. (2007) Understanding the transition between conventional spark-ignited combustion and HCCI in a gasoline engine, Proc. Combust. Inst. 31, 2887-2894. [CrossRef] [Google Scholar]
  • Liu H., Zhang P., Li Z., Luo J., Zheng Z., Yao M. (2011) Effects of temperature inhomogeneities on the HCCI combustion in an optical engine, Appl. Therm. Eng. 31, 1415, 2549-2555. [CrossRef] [Google Scholar]
  • Liu H., Zheng Z., Yao M., Zhang P., Zheng Z., He B., Qi Y. (2012) Influence of temperature and mixture stratification on HCCI combustion using chemiluminescence images and CFD analysis, Appl. Therm. Eng. 3334, 135-143 [CrossRef] [Google Scholar]
  • Aceves S.M., Flowers D.L., Martinez-Frias J., Smith J.R., Dibble R., Au M., Girard J. (2001) HCCI combustion: Analysis and experiments, SAE Technical Paper, 05 2001 [Google Scholar]
  • Bendu H., Murugan S. (2014) Homogeneous charge compression ignition (HCCI) combustion: Mixture preparation and control strategies in diesel engines, Renew. Sustain. Energy Rev. 38, 732-746. [CrossRef] [Google Scholar]
  • Fathi M., Khoshbakhti Saray R., David Checkel M. (2011) The influence of exhaust gas recirculation (EGR) on combustion and emissions of n-heptane/natural gas fueled homogeneous charge compression ignition (HCCI) engines, Appl. Energy 88, 12, 4719-4724. [CrossRef] [Google Scholar]
  • Hosseini V., David Checkel M. (2006) Using reformer gas to enhance HCCI combustion of CNG in a CFR engine, SAE Technical Paper, 2006-01-3247. [Google Scholar]
  • Andrae J.C.G., Bjrnbom P., Cracknell R.F., Kalghatgi G.T. (2007) Autoignition of toluene reference fuels at high pressures modeled with detailed chemical kinetics, Combust. Flame 149, 2-24. [CrossRef] [Google Scholar]
  • Andrae J.C.G., Head R.A. (2009) HCCI experiments with gasoline surrogate fuels modeled by a semidetailed chemical kinetic model, Combust. Flame 156, 842851 [Google Scholar]
  • Lam S.H., Goussis D.A. (1994) The CSP method for simplifying kinetics, Int. J. Chem. Kinet. 26, 4, 461-486. [CrossRef] [Google Scholar]
  • Bykov V., Maas U. (2007) The extension of the ILDM concept to reaction-diffusion manifolds, Combust. Theor. Model., 11, 6, 839-862. [CrossRef] [Google Scholar]
  • Peters N. (1984) Laminar diffusion flamelet models in non-premixed turbulent combustion, Progr. Energy Combust. Sci. 10, 3, 319-339 [Google Scholar]
  • Pitsch H. (2006) Large-eddy simulation of turbulent combustion, Annu. Rev. Fluid Mech. 38, 1, 453-482. [CrossRef] [Google Scholar]
  • Pierce C.D., Moin P. (2004) Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion, J. Fluid Mech. 504, 4, 73-97. [CrossRef] [Google Scholar]
  • van Oijen J.A., De Goey L.P.H. (2000) Modelling of premixed laminar flames using flamelet-generated manifolds, Combust. Sci. Technol. 161, 1, 113-137. [CrossRef] [Google Scholar]
  • Gicquel O., Darabiha N., Thévenin D. (2000) Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion, Proc. Combust. Inst. 28, 2, 1901-1908. [CrossRef] [Google Scholar]
  • Benzinger M.-S., Schiel R., Maas U. (2014) A unified reduced model for auto-ignition and combustion in premixed systems, Eurasian Chemico-Technol. J. 16, 107-116. [CrossRef] [Google Scholar]
  • Kruger C., Steiner R., Wenzel P., Schiessl R., Hofrath C., Mass U. (2007) 3D-CFD simulation of di-diesel combustion applying a progress variable approach accounting for detailed chemistry, SAE Technical Paper 2007-01-4137. [Google Scholar]
  • Rutland C.J. (2011) Large-eddy simulations for internal combustion engines a review, Int. J. Engine Res. 12, 421-451. [CrossRef] [EDP Sciences] [Google Scholar]
  • Richard S., Colin O., Vermorel O., Benkenida A., Angelberger C., Veynante D. (2007) Towards large eddy simulation of combustion in spark ignition engines, Proc. Combust. Inst. 31, 2, 3059-3066. [Google Scholar]
  • Truffin K., Angelberger C., Richard S., Pera C. (2015) Using large-eddy simulation and multivariate analysis to understand the sources of combustion cyclic variability in a spark-ignition engine, Combust. Flame 162, 12, 4371-4390. [CrossRef] [Google Scholar]
  • Schmitt M., Hu R., Wright Y.M., Soltic P., Boulouchos K. (2015) Multiple cycle LES Simulations of a direct injection natural gas engine, Flow Turbul. Combust. 95, 4, 645-668. [CrossRef] [Google Scholar]
  • Enaux B., Granet V., Vermorel O., Lacour C., Thobois L., Dugu V., Poinsot T. (2010) Large eddy simulation of a motored single-cylinder piston engine: numerical strategies and validation, Flow Turbul. Combust. 86, 2, 153-177. [CrossRef] [Google Scholar]
  • Truffin K., Colin O. (2011) Auto-ignition model based on tabulated detailed kinetics and presumed temperature pdf-application to internal combustion engine controlled by thermal stratifications, Int. J. Heat Mass Transfer 54, 4885-4894. [CrossRef] [Google Scholar]
  • Eguz U., Leermakers N., Somers B., de Goey P. (2014) Modeling of PCCI combustion with FGM tabulated chemistry, Fuel 118, 91-99 [CrossRef] [Google Scholar]
  • Raj Mohan V., Haworth D.C. (2015) Turbulence chemistry interactions in a heavy-duty compression ignition engine, Proc. Combust. Inst. 35, 3, 3053-3060. [CrossRef] [Google Scholar]
  • Yu R., Bai X.S., Lehtiniemi H., Ahmed S.S., Mauss F., Richter M., Alden M., Hildingsson L., Johansson B., Hultqvist A. (2006) Effect of turbulence and initial temperature inhomogeneity on homogeneous charge compression ignition combustion, SAE Technical Paper 2006-01-3318. [Google Scholar]
  • Yu R., Bai X.S., Vressner A., Hultqvist A., Johansson B., Olofsson J., Seyfried H., Sjoholm J., Richter M., Alden M. (2007) Effect of turbulence on HCCI combustion, SAE Technical Paper 2007-01-0183. [Google Scholar]
  • Yu R., Joelsson T., Bai X.S., Johansson B. (2008) Effect of temperature stratification on the auto-ignition of lean ethanol/air mixture in HCCI engine, SAE Technical Paper 2008-01-1669. [Google Scholar]
  • Wang Z., Wang F., Shuai S.-J. (2014) Study of engine knock in HCCI combustion using large eddy simulation and complex chemical kinetics, SAE Technical Paper 2014-01-2573. [Google Scholar]
  • Zhen X., Wang Y. (2015) Numerical analysis of knock during HCCI in a high compression ratio methanol engine based on les with detailed chemical kinetics, Energy Convers. Manag. 96, 188-196 [CrossRef] [Google Scholar]
  • Misdariis A., Vermorel O., Poinsot T. (2015) A methodology based on reduced schemes to compute autoignition and propagation in internal combustion engines, Proc. Combust. Inst. 35, 3001-3008. [CrossRef] [Google Scholar]
  • Goryntsev D., Sadiki A., Janicka J. (2011) Investigation of fuel-air mixing in DISI engine using LES, SAE Technical Paper 08. [Google Scholar]
  • Goryntsev D., Sadiki A., Janicka J. (2013) Analysis of misfire processes in realistic direct injection spark ignition engine using multi-cycle large eddy simulation, Proc. Combust. Inst. 34, 2, 2969-2976. [CrossRef] [Google Scholar]
  • Torres D.J., Trujillo M.F. (2006) KIVA-4: an unstructured ALE code for compressible gas flow with sprays, J. Comput. Phys. 219, 2, 943-975. [CrossRef] [Google Scholar]
  • Smagorinsky J. (1963) General circulation experiments with the primitive equations, Monthly Weather Rev. 91, 3, 99-164. [Google Scholar]
  • Yildar E. (2017) Large Eddy Simulation Of A Controlled Auto-Ignition Engine Using A Multidimensional Tabulated Chemistry Approach, Ph.D. thesis, TU-Darmstadt, Darmstadt. [Google Scholar]
  • Maas U., Schiel R., Benzinger M.-S., Janicka J., Breitenberger T., Schulz C., Kaiser S., Schild M., Dreizler A., Fuhrman N., Spicher U., Kubach H., Dahnz C. (2013) Numerical simulation and validation of fuel auto-ignition, Proc. Aachen Colloq. Automob. Engine Technol. 22, 1099-1144. [Google Scholar]
  • Dukowicz J.K. (1980) A particle-fluid numerical model for liquid sprays, J. Comput. Phys. 35, 229-253. [CrossRef] [MathSciNet] [Google Scholar]
  • O'Rourke P.J., Amsden A.A. (1987) The tab method for numerical calculation of spray droplet breakup, SAE Technical Paper. [Google Scholar]
  • Amsden A.A., O'Rourke P.J., Butler T.D. (1989) KIVA-II: a computer program for chemically reactive flows with sprays, Los Alamos National Laboratory Report (LA-11560-MS). [Google Scholar]
  • Torres D.J., ORourke P.J., Amsden A.A. (2003) Efficient multicomponent fuel algorithm, Combust. Theor. Modell. 7, 1, 67-86. [CrossRef] [Google Scholar]
  • Fuhrmann N., Litterscheid C., Ding C.-P., Brbach J., Albert B., Dreizler A. (2014) Cylinder head temperature determination using high-speed phosphor thermometry in a fired internal combustion engine, Appl. Phys. B 116, 2, 293-303 [CrossRef] [Google Scholar]
  • Fuhrmann N., Schild M., Bensing D., Kaiser S.A., Schulz C., Brbach J., Dreizler A. (2012) Two-dimensional cycle-resolved exhaust valve temperature measurements in an optically accessible internal combustion engine using thermographic phosphors, Appl. Phys. B 106, 4, 945-951. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.