Open Access
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 72, Numéro 5, September–October 2017
Numéro d'article 31
Nombre de pages 12
Publié en ligne 7 novembre 2017
  • Aydin A. (1977) Faulting in sandstone, PhD Thesis, Stanford University, Stanford, California, 282 p. [Google Scholar]
  • Aydin A. (1978) Small faults formed as deformation bands in sandstone, Pure Appl. Geophys. 116, 913–930. [CrossRef] [Google Scholar]
  • Caillet G., Batiot, S. (2003) 2D modeling of hydrocarbon migration along and across growth faults: an example from Nigeria, Petrol Geosci 9, 113–124. [CrossRef] [EDP Sciences] [Google Scholar]
  • Caine J.S., Evans J.P., Forster C.B. (1996) Fault zone architecture and permeability structure, Geology 24, 1025–1028. [CrossRef] [Google Scholar]
  • Childs C., Walsh J.J., Manzocchi T., Strand J., Nicol A., Tomasso M., Schöpfer M.P.J., Aplin A.C. (2007) Definition of a fault permeability predictor from outcrop studies of a faulted turbidite sequence, Taranaki, New Zealand, in: Jolley S.J., Barr D., Walsh J.J., Knipe R.J. (eds), Structurally complex reservoirs, Geol. Soc. Lond. Spec. Publ. 292, 235–258. [CrossRef] [Google Scholar]
  • Cornu T., Gout C., Cacas-Stenz M.-C., Woillez M.-N., Guy N., Bouziat A., Colombo D., Frey, J. (2016) NOMBA an integrated project for coupling basin modeling and geomechanical simulations, in: AAPG Hedberg conference: the future of basin and petroleum system modeling, April 2016. [Google Scholar]
  • Evans J.P. (1990) Thickness displacement relationships for fault zones, J. Struc. Geol. 12, 8, 1061–1065. [CrossRef] [Google Scholar]
  • Faille I., Thibaut M., Cacas M.-C., Havé P., Willien F., Wolf S., Agelas L., Pegaz-Fiornet S. (2014) Modeling fluid flow in faulted basins, Oil Gas Sci. Technol. − Rev. IFP 69, 4, 529–553. [CrossRef] [EDP Sciences] [Google Scholar]
  • Faulkner D.R., Mitchell T.M., Rutter E.H., Cembrano J. (2008) On the structure and mechanical properties of large strike-slip faults, Geol. Soc. Lond. Spec. Publ. 299, 1, 139–150. [CrossRef] [Google Scholar]
  • Fisher Q.J., Casey M., Harris S.D., Knipe R.J. (2003) Fluid-flow properties of faults in sandstone: the importance of temperature history, Geology 31, 11, 965–968. [CrossRef] [Google Scholar]
  • Fredman N., Tveranger J., Semshaug S., Braathen A., Sverdrup E. (2007) Sensitivity of fluid flow to fault core architecture and petrophysical properties of fault rocks in siliciclastic reservoirs: a synthetic fault model study, Petrol. Geosci. 13, 4, 305–320. [CrossRef] [EDP Sciences] [Google Scholar]
  • Grauls D.J., Baleix J.M. (1994) Role of overpressures and in situ stresses in fault-controlled hydrocarbon migration: a case study, Mar. Petrol. Geol., 11, 6, 734–742. [CrossRef] [Google Scholar]
  • Kacewicz M., Davies R.K., Welch M., Knipe R.J. (2008) An integration of fault rock properties through time with basin modeling, Search Discov, Article #40349. [Google Scholar]
  • Lander R.H., Larese R.E., Bonnell L.M. (2008) Toward more accurate quartz cement models: the importance of euhedral versus non-euhedral growth rates, AAPG Bull. 92, 11, 1537–1563. [CrossRef] [Google Scholar]
  • Lander R.H., Walderhaug O. (1999) Porosity prediction through simulation of sandstone compaction and quartz cementation, Am. Assoc. Petrol. Geol. Bull., 83, 433–449. [Google Scholar]
  • Lockner D.A., Tanaka H., Ito H., Ikeda R., Omura K., Naka H. (2009) Geometry of the Nojima fault at Nojima-Hirabayashi, Japan – I. A simple damage structure inferred from borehole core permeability, Pure Appl. Geophys., 166, 1649–1667. [CrossRef] [Google Scholar]
  • Manzocchi T., Walsh J.J., Nell P., Yielding G. (1999) Fault transmissibility multipliers for flow simulation models, Petrol. Geosci., 5, 1, 53–63. [CrossRef] [Google Scholar]
  • Manzocchi T., Childs C., Walsh J.J. (2010) Faults and fault properties in hydrocarbon flow models, Geofluids, 10, 1–2, 94–113. [Google Scholar]
  • Micarelli L., Benedicto A., Wibberley C.A.J. (2006) Structural evolution and permeability of normal fault zones in highly porous carbonate rocks, J. Struct. Geol., 28, 7, 1214–1227. [CrossRef] [Google Scholar]
  • Mitchell T.M., Faulkner D.R. (2012) Towards quantifying the matrix permeability of fault damage zones in low porosity rocks, Earth Planet. Sci. Lett., 339, 24–31. [CrossRef] [Google Scholar]
  • Peters K.E., Magoon L.B., Lampe C., Scheirer A.H., Lillis P.G., Gautier D.L. (2008) A four-dimensional petroleum systems model for the San Joaquin Basin Province, California: Chapter 12 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California (No. 1713-12). US Geological Survey. [Google Scholar]
  • Revil A., Cathles L.M. (2002) Fluid transport by solitary waves along growing faults: a field example from the South Eugene Island Basin, Gulf of Mexico, Earth Planet. Sci. Lett. 202, 2, 321–335. [CrossRef] [Google Scholar]
  • Rudkiewicz J.L., Penteado H.D.B., Vear A., Vandenbroucke M., Brigaud F., Wendebourg J., Duppenbecker S. (2000) Chapter 3: Integrated Basin Modeling Helps to Decipher Petroleum Systems, in: AAPG Memoir 73. [Google Scholar]
  • Schmatz J., Vrolijk P.J., Urai J.L. (2010) Clay smear in normal fault zones – the effect of multilayers and clay cementation in water-saturated model experiments, J. Struct. Geol. 32, 11, 1834–1849. [CrossRef] [Google Scholar]
  • Schueller S., Braathen A., Fossen H., Tveranger J. (2013) Spatial distribution of deformation bands in damage zones of extensional faults in porous sandstones: statistical analysis of field data, J. Struct. Geol. 52, 148–162. [CrossRef] [Google Scholar]
  • Shipton Z.K., Soden A.M., Kirkpatrick J.D. (2006) How thick is a fault? Fault displacement-thickness scaling revisited, in: Earthquakes: radiating energy and the physics of faulting, Geophys. Mon. 170, 193–198. [Google Scholar]
  • Schneider S., Wolf S., Faille I., Pot D. (2000) A 3D basin model for hydrocarbon potential evaluation: application to Congo offshore, Oil Gas Sci. Technol. − Rev. IFP 55, 1, 3–13. [CrossRef] [EDP Sciences] [Google Scholar]
  • Sperrevik S., Færseth R.B., Gabrielsen R.H. (2000) Experiments on clay smear formation along faults, Petrol. Geosci. 6, 2, 113–123. [CrossRef] [Google Scholar]
  • Sperrevik S., Gillespie P.A., Fisher Q.J., Halvorsen T., Knipe R.J. (2002) Empirical estimation of fault rock properties, Nor. Petrol. Soc. Spec. Publ. 11, 109–125. [Google Scholar]
  • Torabi A., Berg S.S. (2011) Scaling of fault attributes: a review, Mar. Petrol. Geol. 28, 1444–1460. [CrossRef] [Google Scholar]
  • Tunc X., Faille I., Gallouët T., Cacas M.-C., Havé P. (2012) A model for conductive faults with non-matching grids, Comput. Geosci. 16, 2, 277–296, doi:10.1007/s10596-011-9267-x. [CrossRef] [EDP Sciences] [Google Scholar]
  • Vidale J.E., Li Y.G. (2003) Damage to the shallow Landers fault from the nearby Hector Mine earthquake, Nature 421, 6922, 524–526. [CrossRef] [PubMed] [Google Scholar]
  • Walderhaug O. (1996) Kinetic modeling of quartz cementation and porosity loss in deeply buried sandstone reservoirs, Am. Assoc. Petrol. Geol. Bull. 80, 731–745. [Google Scholar]
  • Wibberley C.A., Yielding G., Di Toro G. (2008) Recent advances in the understanding of fault zone internal structure: a review, Geol. Soc. London, Spec. Publ. 299, 1, 5–33. [CrossRef] [Google Scholar]
  • Wibberley C.A., Gonzalez-Dunia J., Billon O. (2016) Faults as barriers or channels to production-related flow: insights from case studies, Petrol. Geosci., petgeo 2016-057. [Google Scholar]
  • Wilkins S.J., Naruk S.J. (2007) Quantitative analysis of slip-induced dilation with application to fault seal, AAPG Bull. 91, 1, 97–113. [CrossRef] [Google Scholar]
  • Yang Y., Aplin A.C. (2010) A permeability-porosity relationship for mudstones, Mar. Petrol. Geol. 27, 8, 1692–1697. [CrossRef] [Google Scholar]
  • Yielding G., Bretan, P., Freeman, B. (2010) Fault seal calibration: a brief review, Geol. Soc. Lond. Spec. Publ. 347, 243–255. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.