Dossier: LES4ICE'16: LES for Internal Combustion Engine Flows Conference
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 72, Number 5, September–October 2017
Dossier: LES4ICE'16: LES for Internal Combustion Engine Flows Conference
Article Number 32
Number of page(s) 18
DOI https://doi.org/10.2516/ogst/2017028
Published online 07 November 2017
  • Ozdor N., Dulger M., Sher E. (1994) Cyclic variability in spark ignition engines: a literature survey, SAE Technical Paper 940987. [Google Scholar]
  • Johansson B. (1996) Cycle to cycle variations in S.I. engines − the effects of fluid flow and gas composition in the vicinity of the spark plug on early combustion, SAE Technical Paper 962084. [Google Scholar]
  • Pajot O. (2000) Etude expérimentale de l'influence de l'aérodynamique sur le comportement et la structure du front de flamme dans les conditions d'un moteur à allumage commandé, Thèse, University of Orléans, Orléans, France. [Google Scholar]
  • Ayala F.A., Heywood J.B. (2007) Lean SI engines: the role of combustion variability in defining lean limits, SAE Technical Paper 2007-24-0030. [Google Scholar]
  • Lacour C., Pera C. (2011) An experimental database dedicated to the study and modelling of cyclic variability in spark-ignition engines with LES, SAE Technical Paper 2011-01-1282. [Google Scholar]
  • Baum E., Peterson B., Böhm B., Dreizler A. (2014) On the validation of LES applied to internal combustion engine flows, Part 1: comprehensive experimental database, Flow Turb. Combust. 92, 1–2, 269–297. [Google Scholar]
  • Schiffmann P. (2016) Root causes of cycle-to-cycle combustion variations in spark ignited engines, PhD thesis, University of Michigan, Ann Arbor, MI, USA. [Google Scholar]
  • Truffin K., Angelberger C., Richard S., Pera C. (2015) Using large-eddy simulation and multivariate analysis to understand the sources of combustion cyclic variability in a spark-ignition engine, Combust. Flame 162, 12, 4371–4390. [CrossRef] [Google Scholar]
  • Bates S.C. (1989) Flame imaging studies of cycle-by-cycle combustion variation in a SI four-stroke engine, SAE Technical Paper 892086. [Google Scholar]
  • Pera C., Knop V., Reveillon J. (2015) Influence of flow and ignition fluctuations on cycle-to-cycle variations in early flame kernel growth, Proc. Combust. Inst. 35, 2897–2905. [CrossRef] [Google Scholar]
  • Granet V., Vermorel O., Lacour C., Enaux B., Dugué V., Poinsot T. (2012) Large-eddy simulation and experimental study of cycle-to-cycle variations of stable and unstable operating points in a spark ignition engine, Combust. Flame 159, 1562–1575. [CrossRef] [Google Scholar]
  • Goryntsev D., Sadiki A., Klein M., Janicka J. (2009) Large eddy simulation based analysis of the effects of cycle-to-cycle variations on air-fuel mixing in realistic DISI IC-engines, Proc. Combust. Inst. 32, 2759–2766. [CrossRef] [Google Scholar]
  • Goryntsev D., Sadiki A., Janicka J. (2013) Analysis of misfire processes in realistic direct injection spark ignition engine using multi-cycle large eddy simulation, Proc. Combust. Inst. 34, 2969–2976. [CrossRef] [Google Scholar]
  • Heywood J.B. (1988) Internal combustion engine fundamentals, McGraw Hill, New York. [Google Scholar]
  • Matekunas F.A. (1983) Modes and measures of cyclic combustion variability, SAE Technical Paper 830337. [Google Scholar]
  • Beretta G.P., Rashidi M., Keck J.C. (1983) Turbulent flame propagation and combustion in spark ignition engines, Combust. Flame 51, 217–245. [CrossRef] [Google Scholar]
  • Abraham J., Bracco F.V., Reitz R.D. (1985) Comparisons of computed and measured premixed charge engine combustion, Combust. Flame 60, 309–322. [CrossRef] [Google Scholar]
  • Arpaci V.S., Ko Y., Lim M.T., Lee H.S. (2003) Spark kernel development in constant volume combustion, Combust. Flame 135, 315–322. [CrossRef] [Google Scholar]
  • Liu K., Haworth D.C., Yang X.S., Gopalakrishnan V. (2013) Large-eddy simulation of motored flow in a two-valve piston engine: POD analysis and cycle-to-cycle variations, Flow Turb. Combust. 91, 373–403. [Google Scholar]
  • Schiffmann P., Gupta S., Reuss D., Sick V., Yang X., Kuo T.-W. (2016) TCC-III engine benchmark for large-eddy simulation of IC engine flows, Oil Gas Sci. Technol. – Rev. IFP 71, 1, 1–27. [Google Scholar]
  • Sick V., Reuss, D.L., Yang X., Kuo T.-W. (2014) https://deepblue.lib.umich.edu/handle/2027.42/108382. [Google Scholar]
  • Reuss D.L. (2000) Cyclic variability of large-scale turbulent structures in directed and undirected IC engine flows, SAE Technical Paper 2000-01-0246. [Google Scholar]
  • Abraham P.S., Yang X., Gupta S., Kuo T.-W., Reuss D.L., Sick V. (2016) Flow-pattern switching in a motored spark ignition engine, SAE Int. J. Eng. Res. 16, 323–339. [Google Scholar]
  • Montorfano A., Piscaglia F., Onorati A. (2015) An extension of the dynamic mesh handling with topological changes for LES of ICE in OpenFOAM, SAE Technical Paper 2015-01-0384. [Google Scholar]
  • Ameen M.M., Yang X., Kuo T.-W., Xue Q., Som S. (2015) LES for simulating the gas exchange process in a spark ignition engine, in: ICEF2015-1002, Proceedings of the ASME 2015 Internal Combustion Engine Division Fall Technical Conference, Houston, TX, 8–11 November, 2015. [Google Scholar]
  • Zhao H., Ladommatos N. (2001) Engine Combustion Instrumentation and Diagnostics, SAE International, Warrendale, PA, p. 842. [CrossRef] [Google Scholar]
  • Siemens PLM Software (2016) http://mdx.plm.automation.siemens.com/star-cd. [Google Scholar]
  • Colin O., Ducros F., Veynante D., Poinsot T. (2000) A thickened flame model for large eddy simulations of turbulent premixed combustion, Phys. Fluids 12, 1843–1863. [CrossRef] [Google Scholar]
  • Charlette F., Meneveau C., Veynante D. (2002) A power-law flame wrinkling model for LES of premixed turbulent combustion. Part I: non-dynamic formulation and initial tests, Combust. Flame 131, 159–180. [CrossRef] [Google Scholar]
  • Colin O., Truffin K. (2011) A spark ignition model for large eddy simulation based on an FSD transport equation (ISSIM-LES), Proc. Combust. Inst. 33, 3097–3104. [Google Scholar]
  • Shekhawat Y. (2017) Large-eddy simulations of motored flow and combustion in a homogeneous-charge spark-ignition engine, Ph.D. thesis, The Pennsylvania State University, University Park, PA, USA. [Google Scholar]
  • d'Adamo A., Breda S., Fontanesi S., Cantore G. (2015) LES modelling of spark-ignition cycle-to-cycle variability on a highly downsized DISI engine, SAE Int. J. Eng. 8, 2029–2041. [Google Scholar]
  • Duclos J.M., Colin O. (2001) Arc and kernel tracking ignition model for 3D spark-ignition engine calculations, COMODIA, 343–350. [Google Scholar]
  • Verhoeven D. (1995) Spark heat transfer measurements in flowing gases, SAE Technical Paper 952450. [Google Scholar]
  • Petersen B.R., Ghandhi J.B. (2010) High resolution scalar dissipation and turbulence length scale measurements in an internal combustion engine, SAE Technical Paper 2010-01-0185. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.