- Khalil M., Mohamed Jan B. (2012) Viscoplastic modeling of a novel lightweight biopolymer drilling fluid for underbalanced drilling, Ind. Eng. Chem. Res. 51, 4056–4068. [Google Scholar]
- Zhou D., Zhang Z., Tang J., Wang F., Liao L. (2016) Applied properties of oil-based drilling fluids with montmorillonites modified by cationic and anionic surfactants, Appl. Clay Sci. 121-122, 1–8. [Google Scholar]
- Halali M.A., Ghotbi C., Tahmasbi K., Ghazanfari M.H. (2016) The role of carbon nanotubes in improving thermal stability of polymeric fluids: Experimental and modeling, Ind. Eng. Chem. Res. 55, 7514–7534. [Google Scholar]
- Hilhorst J., Meester V., Groeneveld E., Dhont J.K., Lekkerkerker H.N. (2014) Structure and rheology of mixed suspensions of montmorillonite and silica nanoparticles, J. Phys. Chem. B 118, 11816–11825. [CrossRef] [PubMed] [Google Scholar]
- Hussein A.M.O., Amin R.A.M. (2010) Density measurement of vegetable and mineral based oil used in drilling fluids, SPE Nigeria Annual International Conference and Exhibition, 2010, 31 July-7 August 2010, Calabar, Nigeria, SPE 136974,, pp. 237–242. [Google Scholar]
- Demirdal B., Miska S., Takach N., Cunha J.C. (2007) Drilling fluids rheological and volumetric characterization under downhole conditions, Proceedings of the SPE Latin American and Caribbean Petroleum Engineering Conference, 3, pp. 1616–1623. [Google Scholar]
- Kim N.R., Ribeiro P.R., Pessôa-Filho P.A. (2015) PVT behavior of methane and ester-based drilling emulsions, J. Petrol. Sci. Eng. 135, 360–636. [CrossRef] [Google Scholar]
- Peters E.J., Chenevert M.E., Zhang C. (1990) Model for predicting the density of oil-based muds at high pressures and temperatures, SPE Drill. Complet. 5, 141–148. [Google Scholar]
- Hemphill T., Isambourg P. (2005) New model predicts oil, synthetic mud densities, Oil Gas J. 103, 56–58. [Google Scholar]
- Demirdal B., Cunha J.C. (2009) Olefin-based synthetic-drilling-fluids volumetric behaviour under downhole conditions, SPE Drill. Complet. 24, 239–248. [CrossRef] [Google Scholar]
- Hermoso J., Martínez-Boza F.J., Gallegos C. (2017) Organoclay influence on high pressure-high temperature volumetric properties of oil-based drilling fluids, J. Petrol. Sci. Eng. 151, 13–23. [CrossRef] [Google Scholar]
- Babu D.R. (1993) Effect of P-ρ-T behaviour of water muds on static pressures during deep well drilling, J. Petrol. Sci. Eng. 9, 341–439. [CrossRef] [Google Scholar]
- Zamora M., Roy S., Slater K.S., Troncoso J.C. (2013) Study on the volumetric behavior of base oils, brines, and drilling fluids under extreme temperatures and pressures, SPE Drill. Complet. 28, 278–288. [CrossRef] [Google Scholar]
- Gandelman R.A., Leal R.A.F., Gonyalves J.T., Aragao A.F.L., Lomba R.F., Martins A.L. (2007) Study on gelation and freezing phenomena of synthetic drilling fluids in ultradeep water environments, SPE/IADC Drilling Conference and Exhibition 2007, 20 February 2007, Amsterdam, Netherlands, Vol. 3, pp.1013–1020. [Google Scholar]
- Zhao S.-Y., Yan J.-N., Shu Y., Zhang H.-X. (2008) Rheological properties of oil-based drilling fluids at high temperature and high pressure, J. Cent. South Univ. Technol. 15, 457–461. [CrossRef] [Google Scholar]
- Shahbazi K., Metha S.A., Moore R.G., Ursenbanch M.G., Fraassen K.C.V. (2007) Oxidation as a rheology modifier and a potential cause of explosions in oil and synthetic-based drilling fluids, SPE International Symposium on Oilfield Chemistry, Houston, TX, USA, pp. 157–165. [Google Scholar]
- Hron J., Málek J., Rajagopal K.R. (2001) Simple flows of fluids with pressure-dependent viscosities, Proc. R. Soc. A 457, 1603–1622. [CrossRef] [Google Scholar]
- Franta M., Malek J., Rajagopal K.R. (2005) On steady flows of fluids with pressure-and-shear-dependent viscosities, Proc. R. Soc. A 461, 651–670. [CrossRef] [Google Scholar]
- Quiñones-Cisneros S.E., Deiters U.K. (2006) Generalization of the friction theory for viscosity modeling, J. Phys. Chem. B 110, 12820–12834. [CrossRef] [PubMed] [Google Scholar]
- Tschoegl N.W., Knauss W.G., Emri I. (2002) The effect of temperature and pressure on the mechanical properties of thermo-and/or piezorheologically simple polymeric materials in thermodynamic equilibrium – A critical review, Mech. Time-Dependent Mater. 6, 53–99. [CrossRef] [Google Scholar]
- Fillers R.W., Tschoegl N.W. (1977) Effect of pressure on the mechanical properties of polymers, Trans. Soc. Rheol. 21, 51–100. [CrossRef] [Google Scholar]
- Berthe D., Vergne P. (1990) High pressure rheology for high pressure lubrication: A review, J. Rheol. 34, 639–655. [CrossRef] [Google Scholar]
- Lemmon E.W., Huber M. (2004) Thermodynamic properties of n-dodecane, Energy Fuels 18, 960–967. [Google Scholar]
- Wagner W., Pruβ A. (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use, J. Phys. Chem. Ref. Data 31, 387–535. [Google Scholar]
- Dávila M.J., Alcalde R., Atilhan M., Aparicio S. (2012) PρT measurements and derived properties of liquid 1-alkanols, J. Chem. Thermodyn. 47, 241–259. [Google Scholar]
- Hermoso J., Jofore B.D., Martínez-Boza F.J., Gallegos C. (2012) High pressure mixing rheology of drilling fluids, Ind. Eng. Chem. Res. 51, 14399–14407. [Google Scholar]
- Hermoso J., Martínez-Boza F.J., Gallegos C. (2014) Combined effect of pressure and temperature on the viscous behaviour of all-oil drilling fluids, Oil Gas Sci. Technol – Rev. IFP 69, 1283–1296. [CrossRef] [EDP Sciences] [Google Scholar]
- Martín-Alfonso M.J., Martínez-Boza F.J., Partal P., Gallegos C. (2006) Influence of pressure and temperature on the flow behaviour of heavy fuel oils, Rheol. Acta 45, 357–365. [Google Scholar]
- Poling B.E., Prausnitz J.M., O’Connell J.P. (2001) The properties of gases and liquids, 5th edn., McGraw-Hill, New York. [Google Scholar]
- Moonan W.H., Tschoegl N.W. (1983) Effect of pressure on the mechanical properties of polymers. 2. Expansivity and compressibility measurements, Macromolecules 16, 55–59. [Google Scholar]
- Bair S., Mary C., Bouscharain N., Vergne P. (2013) An improved Yasutomi correlation for viscosity at high pressure, Proc. Inst. Mech. Eng. Part J 227, 1056–1060. [CrossRef] [Google Scholar]
- Murnaghan F.D. (1951) Finite deformation of an elastic solid, Wiley, New York. [Google Scholar]
- Fakhreddine Y.A., Zoller P. (1990) Equation of state of a polydimethylsiloxane fluid, J. Appl. Polym. Sci. 41, 1087–1093. [Google Scholar]
- Martín-Alfonso M.J., Martínez-Boza F.J., Navarro F.J., Fernández M., Gallegos C. (2007) Pressure-temperature-viscosity relationship for heavy petroleum fractions, Fuel 86, 227–233. [CrossRef] [Google Scholar]
- Martínez-Boza F.J., Martín-Alfonso M.J., Gallegos C., Fernández M. (2001) High-pressure behavior of intermediate fuel oils, Energy Fuels 25, 5138–5144. [Google Scholar]
- Martínez-Boza F., Fernandez-Latorre F., Gallegos C. (2009) High-pressure viscosity of used motor oil/vacuum residue blends, Fuel 88, 1595–1601. [CrossRef] [Google Scholar]
- Yasutomi S., Bair S., Winer W.O. (1984) An application of a free volume model to lubricant rheology I – Dependence of viscosity on temperature and pressure, J. Tribol. 106, 291–302. [Google Scholar]
- Bair S. (2001) High-pressure high-shear stress rheology of polybutene, J. Non-Newtonian Fluid Mech. 97, 53–65. [CrossRef] [Google Scholar]
- Houwen O.H., Geehan T. (1986) Rheology of oil-base muds, SPE paper 15416 presented at the SPE Annual Technical Conference and Exhibition, 5-8 October, held in New Orleans, LA, USA. [Google Scholar]
- Politte M.D. (1985) Invert oil mud rheology as a function of temperature and pressure, SPE paper 13458 presented at the SPE/IADC Drilling Conference, 6-8 March, held in New Orleans, LA, USA. [Google Scholar]
- Hermoso J., Martínez-Boza F.J., Gallegos C. (2015) Influence of aqueous phase volume fraction organoclay concentration and pressure on invert-emulsion oil muds rheology, J. Ind. Eng. Chem. 22, 341–349. [CrossRef] [Google Scholar]
- Demirdal B., Cunha J.C. (2009) Importance of drilling fluids′ rheological and volumetric characterization to plan and optimize managed pressure drilling operation, J. Can. Petrol. Technol. 48, 8–14. [CrossRef] [Google Scholar]
- Santoyo E., García A., Morales J.M., Contreras E., Espinosa-Paredes G. (2001) Effective thermal conductivity of Mexican geothermal cementing systems in the temperature range from 28 °C to 200 °C, Appl. Thermal Eng. 21, 1799–1812. [CrossRef] [Google Scholar]
Open Access
Issue |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 72, Number 4, July–August 2017
|
|
---|---|---|
Article Number | 18 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.2516/ogst/2017014 | |
Published online | 04 July 2017 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.