Dossier: Dynamics of Evolving Fluid Interfaces - DEFI Gathering Physico-Chemical and Flow Properties
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 72, Number 4, July–August 2017
Dossier: Dynamics of Evolving Fluid Interfaces - DEFI Gathering Physico-Chemical and Flow Properties
Article Number 19
Number of page(s) 12
DOI https://doi.org/10.2516/ogst/2017010
Published online 04 July 2017
  • Suslick K.S., Flannigan D.J. (2007) Inside a collapsing bubble: Sonoluminescence and the conditions during cavitation, Annu. Rev. Phys. Chem. 59, 659–683.
  • Mishra C., Peles Y. (2005) Flow visualization of cavitating flows through a rectangular slot micro-orifice ingrained in a microchannel, Phys. Fluids 17, 113602. [CrossRef]
  • Mishra C., Peles Y. (2005) Cavitation in flow through a micro-orifice inside a silicon microchannel, Phys. Fluids 17, 013601. [CrossRef]
  • Fernandez Rivas D., Prosperetti A., Zijlstra A.G., Lohse D., Gardeniers H.J.G.E. (2010) Efficient sonochemistry through microbubbles generated with micromachined surfaces, Angew. Chem. Int. Ed. 49, 9699–9701. [CrossRef]
  • Tandiono, Ohl S.-W., Ow D.S.W., Klaseboer E., Wong V.V., Dumke R., Ohl C.-D. (2011) Sonochemistry and sonoluminescence in microfluidics, Proc. Nat. Acad. Sci. USA 108, 5996–5998. [CrossRef]
  • Rooze J., André M., van der Gulik G.-J.S., Fernandez-Rivas D., Gardeniers J.G.E., Rebrov E.V., Schouten J.C., Keurentjes J.T.F. (2012) Hydrodynamic cavitation in micro channels with channel sizes of 100 and 750 micrometers, Microfluid Nanofluid 12, 499–508. [CrossRef]
  • Medrano M., Zermatten P.J., Pellone C., Franc J.P., Ayela F. (2011) Hydrodynamic cavitation in microsystems. I. Experiments with deionized water and nanofluids, Phys. Fluids 23, 127103. [CrossRef]
  • Nguyen N.T., Wereley S.T. (2002) Fundamentals and applications of microfluidics, Artech House Inc., Norwood, Massachusetts, USA.
  • Medrano M., Pellone C., Zermatten P.-J., Ayela F. (2012) Hydrodynamic cavitation in microsystems part II: Simulation and optical observations, Phys. Fluids 24, 047101. [CrossRef]
  • Zhu J., Zhao D., Xu L., Zhang X. (2016) Interactions of vortices, thermal effects and cavitation in liquid hydrogen cavitating flows, Int. J. Hydrogen Energy 41, 614–631.
  • He Z., Zhong W., Wang Q., Jiang Z., Shao Z. (2013) Effect of nozzle geometrical and dynamic factors on cavitating and turbulent flow in a diesel multi-hole injector nozzle, Int. J. Therm. Sci. 70, 132–143. [CrossRef]
  • Serras-Pereira J., van Romunde Z., Aleiferis P.G., Richardson D., Wallace S., Cracknell R.F. (2010) Cavitation, primary break-up and flash boiling of gasoline, iso-octane and n-pentane with a real-size optical direct-injection nozzle, Fuel 89, 2592–2607. [CrossRef]
  • Ayela F., Medrano-Muñoz M., Amans D., Dujardin C., Brichart T., Martini M., Tillement O., Ledoux G. (2013) Experimental evidence of temperature gradients in cavitating microflows seeded with thermosensitive nanoprobes, Phys. Rev. E: Stat. Phys., Plasmas, Fluids 88, 043016. [CrossRef]
  • Ayela F., Colombet D., Ledoux G., Tillement O. (2015) Thermal investigation of cavitating flows through microchannels, with the help of fluorescent nanoprobes, Houille Blanche – Revue internationale de l’eau, 1, 102–108. [CrossRef] [EDP Sciences]
  • Vijayakumar T., Thundil Karuppa Raj R., Nanthagopal K. (2011) Effect of the injection pressure on the internal flow characteristics for diethyl and dimethyl ether and diesel fuel injectors, Therm. Sci. 15, 4, 1123–1130. [CrossRef]
  • Polat S. (2016) An experimental study on combustion, engine performance and exhaust emissions in a HCCI engine fuelled with diethyl ether-ethanol fuel blends, Fuel Process. Technol. 143, 140–150. [CrossRef]
  • Mossaz S., Colombet D., Ayela F. (2017) Hydrodynamic cavitation of binary liquid mixtures in laminar and turbulent flow regimes, Exp. Therm. Fluid Sci. 80, 337–347. [CrossRef]
  • Singh R., Peles Y. (2009) The effects of fluid properties on cavitation in a micro domain, J. Micromech. Microeng. 19, 25009.
  • Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. (2004) Electric field effect in atomically thin carbon films, Science 306, 5696, 666–669. [CrossRef] [PubMed]
  • Butler S.Z., Hollen S.M., Cao L., Cui Y., Gupta J.A., Gutiérrez H.R., Heinz T.F., Hong S.S., Huang J., Ismach A.F., Johnston-Halperin E., Kuno M., Plashnitsa V.V., Robinson R.D., Ruoff R.S., Salahuddin S., Shan J., Shi L., Spencer M.G., Terrones M., Windl W., Goldberger J.E. (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7, 4, 2898–2926. [CrossRef] [PubMed]
  • Geim A.K., Grigorieva I.V. (2013) Van der Waals heterostructures, Nature 499, 419–425. [CrossRef] [PubMed]
  • Yi M., Shen Z. (2015) A review on mechanical exfoliation for the scalable production of graphene, J. Mater. Chem. A 3, 11700–11715. [CrossRef]
  • Arao Y., Mizuno Y., Araki K., Kubouchi M. (2016) Mass production of high-aspect ratio few-layer-graphene by high-speed laminar flow, Carbon 102, 330–338.
  • Ciesielski A., Samori P. (2014) Graphene via sonication assisted liquid-phase exfoliation, Chem. Soc. Rev. 43, 381–398. [CrossRef] [PubMed]
  • Paton K.R., Varrla E., Backes C., Smith R.J., Khan U., O’Neill A., Boland C., Lotya M., Istrate O.M., King P., Higgins T., Barwich S., May P., Puczkarski P., Ahmed I., Moebius M., Petterson H., Long E., Coelho J., O’Brien S.E., McGuire E.K., Mendoza Sanchez B., Duesberg G.S., McEvoy N., Pennycook T.J., Downing C., Crossley A., Nicolosi V., Coleman J.N. (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids, Nat. Mater. 13, 624–630.
  • Shen Z., Li J., Yi M., Zhang X., Ma S. (2011) Preparation of graphene by jet cavitation, Nanotechnology 22, 365306. [CrossRef] [PubMed]
  • Nacken T.J., Damm C., Walter J., Rüger A., Peukert W. (2015) Delamination of graphite in a high pressure homogenizer, RSC Adv. 5, 57328.
  • Chevalier J., Ayela F. (2008) Microfluidic on chip viscometers, Rev. Sci. Instrum. 79, 7, 076102.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.