Dossier: Dynamics of Evolving Fluid Interfaces - DEFI Gathering Physico-Chemical and Flow Properties
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 72, Number 4, July–August 2017
Dossier: Dynamics of Evolving Fluid Interfaces - DEFI Gathering Physico-Chemical and Flow Properties
Article Number 19
Number of page(s) 12
DOI https://doi.org/10.2516/ogst/2017010
Published online 04 July 2017
  • Suslick K.S., Flannigan D.J. (2007) Inside a collapsing bubble: Sonoluminescence and the conditions during cavitation, Annu. Rev. Phys. Chem. 59, 659–683. [Google Scholar]
  • Mishra C., Peles Y. (2005) Flow visualization of cavitating flows through a rectangular slot micro-orifice ingrained in a microchannel, Phys. Fluids 17, 113602. [CrossRef] [Google Scholar]
  • Mishra C., Peles Y. (2005) Cavitation in flow through a micro-orifice inside a silicon microchannel, Phys. Fluids 17, 013601. [CrossRef] [Google Scholar]
  • Fernandez Rivas D., Prosperetti A., Zijlstra A.G., Lohse D., Gardeniers H.J.G.E. (2010) Efficient sonochemistry through microbubbles generated with micromachined surfaces, Angew. Chem. Int. Ed. 49, 9699–9701. [CrossRef] [Google Scholar]
  • Tandiono, Ohl S.-W., Ow D.S.W., Klaseboer E., Wong V.V., Dumke R., Ohl C.-D. (2011) Sonochemistry and sonoluminescence in microfluidics, Proc. Nat. Acad. Sci. USA 108, 5996–5998. [CrossRef] [Google Scholar]
  • Rooze J., André M., van der Gulik G.-J.S., Fernandez-Rivas D., Gardeniers J.G.E., Rebrov E.V., Schouten J.C., Keurentjes J.T.F. (2012) Hydrodynamic cavitation in micro channels with channel sizes of 100 and 750 micrometers, Microfluid Nanofluid 12, 499–508. [CrossRef] [Google Scholar]
  • Medrano M., Zermatten P.J., Pellone C., Franc J.P., Ayela F. (2011) Hydrodynamic cavitation in microsystems. I. Experiments with deionized water and nanofluids, Phys. Fluids 23, 127103. [CrossRef] [Google Scholar]
  • Nguyen N.T., Wereley S.T. (2002) Fundamentals and applications of microfluidics, Artech House Inc., Norwood, Massachusetts, USA. [Google Scholar]
  • Medrano M., Pellone C., Zermatten P.-J., Ayela F. (2012) Hydrodynamic cavitation in microsystems part II: Simulation and optical observations, Phys. Fluids 24, 047101. [CrossRef] [Google Scholar]
  • Zhu J., Zhao D., Xu L., Zhang X. (2016) Interactions of vortices, thermal effects and cavitation in liquid hydrogen cavitating flows, Int. J. Hydrogen Energy 41, 614–631. [Google Scholar]
  • He Z., Zhong W., Wang Q., Jiang Z., Shao Z. (2013) Effect of nozzle geometrical and dynamic factors on cavitating and turbulent flow in a diesel multi-hole injector nozzle, Int. J. Therm. Sci. 70, 132–143. [CrossRef] [Google Scholar]
  • Serras-Pereira J., van Romunde Z., Aleiferis P.G., Richardson D., Wallace S., Cracknell R.F. (2010) Cavitation, primary break-up and flash boiling of gasoline, iso-octane and n-pentane with a real-size optical direct-injection nozzle, Fuel 89, 2592–2607. [CrossRef] [Google Scholar]
  • Ayela F., Medrano-Muñoz M., Amans D., Dujardin C., Brichart T., Martini M., Tillement O., Ledoux G. (2013) Experimental evidence of temperature gradients in cavitating microflows seeded with thermosensitive nanoprobes, Phys. Rev. E: Stat. Phys., Plasmas, Fluids 88, 043016. [CrossRef] [Google Scholar]
  • Ayela F., Colombet D., Ledoux G., Tillement O. (2015) Thermal investigation of cavitating flows through microchannels, with the help of fluorescent nanoprobes, Houille Blanche – Revue internationale de l’eau, 1, 102–108. [CrossRef] [EDP Sciences] [Google Scholar]
  • Vijayakumar T., Thundil Karuppa Raj R., Nanthagopal K. (2011) Effect of the injection pressure on the internal flow characteristics for diethyl and dimethyl ether and diesel fuel injectors, Therm. Sci. 15, 4, 1123–1130. [CrossRef] [Google Scholar]
  • Polat S. (2016) An experimental study on combustion, engine performance and exhaust emissions in a HCCI engine fuelled with diethyl ether-ethanol fuel blends, Fuel Process. Technol. 143, 140–150. [CrossRef] [Google Scholar]
  • Mossaz S., Colombet D., Ayela F. (2017) Hydrodynamic cavitation of binary liquid mixtures in laminar and turbulent flow regimes, Exp. Therm. Fluid Sci. 80, 337–347. [CrossRef] [Google Scholar]
  • Singh R., Peles Y. (2009) The effects of fluid properties on cavitation in a micro domain, J. Micromech. Microeng. 19, 25009. [Google Scholar]
  • Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. (2004) Electric field effect in atomically thin carbon films, Science 306, 5696, 666–669. [CrossRef] [PubMed] [Google Scholar]
  • Butler S.Z., Hollen S.M., Cao L., Cui Y., Gupta J.A., Gutiérrez H.R., Heinz T.F., Hong S.S., Huang J., Ismach A.F., Johnston-Halperin E., Kuno M., Plashnitsa V.V., Robinson R.D., Ruoff R.S., Salahuddin S., Shan J., Shi L., Spencer M.G., Terrones M., Windl W., Goldberger J.E. (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7, 4, 2898–2926. [CrossRef] [PubMed] [Google Scholar]
  • Geim A.K., Grigorieva I.V. (2013) Van der Waals heterostructures, Nature 499, 419–425. [CrossRef] [PubMed] [Google Scholar]
  • Yi M., Shen Z. (2015) A review on mechanical exfoliation for the scalable production of graphene, J. Mater. Chem. A 3, 11700–11715. [CrossRef] [Google Scholar]
  • Arao Y., Mizuno Y., Araki K., Kubouchi M. (2016) Mass production of high-aspect ratio few-layer-graphene by high-speed laminar flow, Carbon 102, 330–338. [Google Scholar]
  • Ciesielski A., Samori P. (2014) Graphene via sonication assisted liquid-phase exfoliation, Chem. Soc. Rev. 43, 381–398. [CrossRef] [PubMed] [Google Scholar]
  • Paton K.R., Varrla E., Backes C., Smith R.J., Khan U., O’Neill A., Boland C., Lotya M., Istrate O.M., King P., Higgins T., Barwich S., May P., Puczkarski P., Ahmed I., Moebius M., Petterson H., Long E., Coelho J., O’Brien S.E., McGuire E.K., Mendoza Sanchez B., Duesberg G.S., McEvoy N., Pennycook T.J., Downing C., Crossley A., Nicolosi V., Coleman J.N. (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids, Nat. Mater. 13, 624–630. [PubMed] [Google Scholar]
  • Shen Z., Li J., Yi M., Zhang X., Ma S. (2011) Preparation of graphene by jet cavitation, Nanotechnology 22, 365306. [CrossRef] [PubMed] [Google Scholar]
  • Nacken T.J., Damm C., Walter J., Rüger A., Peukert W. (2015) Delamination of graphite in a high pressure homogenizer, RSC Adv. 5, 57328. [Google Scholar]
  • Chevalier J., Ayela F. (2008) Microfluidic on chip viscometers, Rev. Sci. Instrum. 79, 7, 076102. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.