- Bahadori A. (2014) Pollution Control in Oil, Gas and Chemical Plants, Springer Cham Heidelberg, New York, Dordrecht, London. [CrossRef] [Google Scholar]
- Eimer D.A. (2014) Gas treating absorption theory and practice, John Wiley & Sons Ltd., Chichester, UK. [Google Scholar]
- Kohl A.L., Nielsen R. (1997) Gas Purification, 5th edn., Gulf Professional Publishing, Houston, Texas. [Google Scholar]
- Info Mine research group (2012) Sodium sulfide and hydrosulfide production market and forecast in the CIS, 2nd ed., Info Mine research group, Moscow. [Google Scholar]
- Álvarez-Cruz R., Sánchez-Flores B.E., Torres-González J., Antaño-López R., Castañeda F. (2012) Insights in the development of a new method to treat H2S and CO2 from sour gas by alkali, Fuel 100, 173–176. [CrossRef] [Google Scholar]
- Bashipour F., Nouri Khorasani S., Rahimi A. (2014) Mathematical modeling and genetic algorithm optimization of reactive absorption of hydrogen sulfide, Chem. Eng. Technol. 37, 2175–2184. [CrossRef] [Google Scholar]
- Agarwal J. (2012) Effect of absorbability of iron contents by precipitated barium sulphate in the commercial crude sodium sulphide, The IJST 2, 730–732. [Google Scholar]
- Astarita G., Gioia F. (1964) Hydrogen sulphide chemical absorption, Chem. Eng. Sci. 19, 963–971. [CrossRef] [Google Scholar]
- Lacasse K., Baumann W. (2004) Textile chemicals: Environmental data and facts, Springer-Verlag, Germany, pp. 557–558. [Google Scholar]
- Peters R.W., Ku Y., Bhattacharyya D. (1985) Evaluation of recent treatment techniques for removal of heavy metals from industrial wastewaters, AICHE J. Symposium Series 81, 165–203. [Google Scholar]
- Speight J.G. (2002) Chemical and process design handbook, McGraw-Hill Inc., New York. [Google Scholar]
- Turpin A., Couvert A., Laplanche A., Paillier A. (2008) Experimental study of mass transfer and H2S removal efficiency in a spray tower, Chem. Eng. Process. 47, 886–892. [CrossRef] [Google Scholar]
- Xia J., Pérez-Salado Kamps A., Rumpf B., Maurer G. (2000) Solubility of hydrogen sulfide in aqueous solutions of single strong electrolytes sodium nitrate, ammonium nitrate, and sodium hydroxide at temperatures from 313 to 393 K and total pressures up to 10 MPa, Fluid Phase Equilibr. 167, 263–284. [CrossRef] [Google Scholar]
- Maschwitz P.A. (1953) Process for manufacturing sodium hydrosulfide solution, US Patent No. 2662000 A. [Google Scholar]
- Yasuo U., Katsuo W. (1966) Utilization of waste gas and waste soda liquid in oil refinery, US Patent No. 3262753 A. [Google Scholar]
- Manganaro J.L. (1984) Production of sodium hydrosulfide, US Patent No. 4439411 A. [Google Scholar]
- Akiba L. (2002) Method for the production of anhydrous alkali metal sulfide and alkali metal sulfide solution, US Patent No. 6337062 B1. [Google Scholar]
- Brons G., Myers R.D. (1997) Contacting with sodium hydroxide to form sodium sulfide, contacting sodium sulfide with water and a transition metal to form transition metal sulfide, sodium hydroxide, hydrogen and impurities, US Patent No. 5635056 A. [Google Scholar]
- Mamrosh D., Beitler C., Fisher K., Stem S. (2008) Consider improved scrubbing designs for acid gases, Hydrocarb. Process, 1, 69–74. [Google Scholar]
- Biermann C.J. (1996) Handbook of pulping and papermaking, 2nd edn., Academic Press, New York. [Google Scholar]
- Bezerra M.A., Santelli R.E., Oliveira E.P., Villar L.S., Escaleira L.A. (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta 76, 965–977. [CrossRef] [PubMed] [Google Scholar]
- Box G.E.P., Wilson K.B. (1951) On the experimental attainment of optimum conditions, J. Roy. Stat. Soc. B Met. 13, 1–45. [Google Scholar]
- Bashipour F., Ghoreishi S.M. (2014) Response surface optimization of supercritical CO2 extraction of α-tocopherol from gel and skin of Aloe vera and almond leaves, J. Supercrit. Fluids 95, 348–354. [CrossRef] [Google Scholar]
- Khan A.H., Shang J.Q., Alam R. (2014) Optimization of sample preparation method of total sulphur measurement in mine tailings, Int. J. Environ. Sci. Technol. 11, 1989–1998. [CrossRef] [Google Scholar]
- Khosravi M., Rostami B., Fatemi S. (2012) Uncertainty Analysis of a Fractured Reservoir’s Performance: A Case Study, Oil Gas Sci. Technol. 67, 423–433. [CrossRef] [EDP Sciences] [Google Scholar]
- Myers R.H., Montgomery D.C., Anderson-Cook C.M. (2009) Response surface methodology: process and product optimization using designed experiments, John Wiley & Sons, Inc., Hoboken, New Jersey. [Google Scholar]
- Maran P.J., Sivakumar V., Thirugnanasambandham K., Sridhar R. (2013) Artificial neural network and response surface methodology modeling in mass transfer parameters predictions during osmotic dehydration of Carica papaya L., Alexandria Eng. J. 52, 507–516. [CrossRef] [Google Scholar]
- Bashipour F., Nouri Khorasani S., Rahimi A. (2015) H2S reactive absorption from off-gas in a spray column: insights from experiments and modeling, Chem. Eng. Technol. 38, 2137–2145. [Google Scholar]
- Desai K.M., Survase S.A., Saudagar P.S., Lele S., Singhal R.S. (2008) Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: case study of fermentative production of scleroglucan, Biochem. Eng. J. 41, 266–273. [CrossRef] [Google Scholar]
- Jorjani E., Chehreh C.S., Mesroghli S.H. (2008) Application of artificial neural networks to predict chemical desulfurization of Tabas coal, Fuel 87, 2727–2734. [CrossRef] [Google Scholar]
- Fausett L.V. (1993) Fundamentals of neural networks: architectures, algorithms and applications, Prentice-Hall, Englewood Cliffs, NJ. [Google Scholar]
- Khajeh M., Moghaddam M.G., Shakeri M. (2012) Application of artificial neural network in predicting the extraction yield of essential oils of Diplotaenia cachrydifolia by supercritical fluid extraction, J. Supercrit. Fluids 69, 91–96. [CrossRef] [Google Scholar]
- Chapoy A., Mohammadi A.H., Richon D. (2007) Predicting the hydrate stability zones of natural gases using artificial neural networks, Oil Gas Sci. Technol. 62, 701–706. [CrossRef] [EDP Sciences] [Google Scholar]
- Yincheng G., Zhenqi N., Wenyi L. (2011) Comparison of removal efficiencies of carbon dioxide between aqueous ammonia and NaOH solution in a fine spray column, Energy Procedia 4, 512–518. [CrossRef] [Google Scholar]
- Codolo M.C., Bizzo W.A. (2013) Experimental study of the SO2 removal efficiency and volumetric mass transfer coefficients in a pilot-scale multi-nozzle spray tower, Int. J. Heat Mass Transfer 66, 80–89. [CrossRef] [Google Scholar]
- Gioia F., Astarita G. (1967) General solution to the problem of hydrogen sulfide absorption in alkaline solutions, Ind. Eng. Chem. Fundam. 6, 370–375. [CrossRef] [Google Scholar]
- Bandyopadhyay A., Biswas M.N. (2008) Critical flow atomizer in SO2 spray scrubbing, Chem. Eng. J. 139, 29–41. [CrossRef] [Google Scholar]
- Bandyopadhyay A., Biswas M.N. (2012) CO2 capture in a spray column using a critical flow atomizer, Sep. Purif. Technol. 94, 104–114. [CrossRef] [Google Scholar]
- Zhang D.N., Chen Q.Z., Zhao Y.X., Maeda Y., Tsujino Y. (2001) Stack gas desulfurization by seawater in Shanghai, Water, Air, Soil Poll. 130, 271–276. [CrossRef] [Google Scholar]
Open Access
Issue |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 72, Number 2, March–April 2017
|
|
---|---|---|
Article Number | 9 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.2516/ogst/2017004 | |
Published online | 10 March 2017 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.