Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 72, Number 2, March–April 2017
Article Number 8
Number of page(s) 17
DOI https://doi.org/10.2516/ogst/2017002
Published online 10 March 2017
  • Merdrignac I., Roy-Auberger M., Guillaume D., Verstraete J. (2013) Hydroprocessing and hydroconversion of residue fractions, in: Toulhoat H., Raybaud P. (eds), Catalysis by Transition Metal Sulfides, Editions TECHNIP, Paris, France. [Google Scholar]
  • Iglesia E., Soled S., Baumgartner J., Reyes S. (1995) Synthesis and catalytic properties of eggshell cobalt catalysts for the Fischer-Tropsch synthesis, Journal of Catalysis 153, 1, 108–122. [CrossRef] [Google Scholar]
  • Derrien M. (1986) Selective hydrogenation applied to the refining of petrochemical raw materials produced by steam cracking, Studies in Surface Science and Catalysis 27, 613–666. [CrossRef] [Google Scholar]
  • Godinez C., Cabanes A., Villora G. (1995) Experimental study of the front-end selective hydrogenation of steam-cracking C2-C3 mixture, Chemical Engineering and Processing: Process Intensification 34, 5, 459–468. [CrossRef] [Google Scholar]
  • Wernert V., Bouchet R., Denoyel R. (2010) Influence of molecule size on its transport properties through a porous medium, Analytical Chemistry 82, 7, 2668–2679. [CrossRef] [PubMed] [Google Scholar]
  • Deen W. (1987) Hindered transport of large molecules in liquid-filled pores, AIChE Journal 33, 9, 1409–1425. [CrossRef] [Google Scholar]
  • Dechadilok P., Deen W. (2006) Hindrance factors for diffusion and convection in pores, Industrial & Engineering Chemistry Research 45, 21, 6953–6959. [CrossRef] [Google Scholar]
  • Satterfield C., Colton C., Pitcher W. (1973) Restricted diffusion in liquids within fine pores, AIChE Journal 19, 3, 628–635. [CrossRef] [Google Scholar]
  • Comiti J., Renaud M. (1989) A new model for determining mean structure parameters of fixed beds from pressure drop measurements: application to beds packed with parallelepipedal particles, Chemical Engineering Science 44, 7, 1539–1545. [CrossRef] [Google Scholar]
  • Weissberg H. (1963) Effective diffusion coefficient in porous media, Journal of Applied Physics 34, 9, 2636–2639. [CrossRef] [Google Scholar]
  • Barrande M., Bouchet R., Denoyel R. (2007) Tortuosity of porous particles, Analytical Chemistry 79, 23, 9115–9121. [CrossRef] [PubMed] [Google Scholar]
  • Hollewand M., Gladden L. (1995) Transport heterogeneity in porous pellets – I. PGSE NMR studies, Chemical Engineering Science 50, 2, 309–326. [CrossRef] [Google Scholar]
  • Prasher B., Ma Y.H. (1977) Liquid diffusion in microporous alumina pellets, AIChE Journal 23, 3, 303–311. [CrossRef] [Google Scholar]
  • Tayakout M., Ferreira C., Espinat D., Arribas Picon S., Sorbier L., Guillaume D., Guibard I. (2010) Diffusion of asphaltene molecules through the pore structure of hydroconversion catalysts, Chemical Engineering Science 65, 5, 1571–1583. [CrossRef] [Google Scholar]
  • Callaghan P., MacGowan D., Packer K., Zelaya F. (1990) High-resolution q-space imaging in porous structures, Journal of Magnetic Resonance 90, 1, 177–182. [Google Scholar]
  • Tanner J. (1970) Use of the stimulated echo in NMR diffusion studies, The Journal of Chemical Physics 52, 5, 2523–2526. [CrossRef] [Google Scholar]
  • Valiullin R., Kärger J. (2011) The impact of mesopores on mass transfer in nanoporous materials: evidence of diffusion measurement by NMR, Chemie Ingenieur Technik 83, 1-2, 166–176. [CrossRef] [Google Scholar]
  • Wood J., Gladden L. (2003) Effect of coke deposition upon pore structure and self-diffusion in deactivated industrial hydroprocessing catalysts, Applied Catalysis A: General 249, 2, 241–253. [CrossRef] [Google Scholar]
  • Kortunov P., Vasenkov S., Kärger J., Valiullin R., Gottschalk P., Fé Elía M., Perez M., Stöcker M., Drescher B., McElhiney G., Berger C., Gläser R., Weitkamp J. (2005) The role of mesopores in intracrystalline transport in USY zeolite: PFG NMR diffusion study on various length scales, Journal of the American Chemical Society 127, 37, 13055–13059. [CrossRef] [PubMed] [Google Scholar]
  • Kirchner T., Shakhov A., Zeigermann P., Valiullin R., Kärger J. (2012) Probing mesopore connectivity in hierarchical nanoporous materials, Carbon 50, 13, 4804–4808. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Morris K.F., Johnson C.S.Jr (1992) Diffusion-ordered two-dimensional nuclear magnetic resonance spectroscopy, Journal of the American Chemical Society 114, 8, 3139–3141. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Johnson C.S. (1999) Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications, Progress in Nuclear Magnetic Resonance Spectroscopy 34, 3, 203–256. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Morris G.A. (2002) Diffusion-Ordered Spectroscopy (DOSY), pp. 35–44. [Google Scholar]
  • Ernst R.R. (1992) Nuclear magnetic resonance Fourier transform spectroscopy (Nobel lecture), Angewandte Chemie International Edition in English 31, 7, 805–823. [CrossRef] [Google Scholar]
  • Durand E., Clemancey M., Quoineaud A.-A., Verstraete J., Espinat D., Lancelin J.-M. (2008) 1H diffusion-ordered spectroscopy (DOSY) nuclear magnetic resonance (NMR) as a powerful tool for the analysis of hydrocarbon mixtures and asphaltenes, Energy & Fuels 22, 4, 2604–2610. [CrossRef] [Google Scholar]
  • Krüger G., Weiss R. (1970) Diffusionskonstanten einiger organischer Flüssigkeiten, Zeitschrift für Naturforschung A 25, 5, 777–780. [Google Scholar]
  • Harris K., Alexander J., Goscinska T., Malhotra R., Woolf L., Dymond J. (1993) Temperature and density dependence of the selfdiffusion coefficients of liquid n-octane and toluene, Molecular Physics 78, 1, 235–248. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Pickup S., Blum F. (1989) Self-diffusion of toluene in polystyrene solutions, Macromolecules 22, 10, 3961–3968. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Santos F., Nieto de Castro C., Dymond J., Dalaouti N., Assael M., Nagashima A. (2006) Standard reference data for the viscosity of toluene, Journal of Physical and Chemical Reference Data 35, 1, 1–8. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Sahimi M. (1993) Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing, Reviews of Modern Physics 65, 4, 1393–1534. [CrossRef] [Google Scholar]
  • Kosek J., Stepanek F., Marek M. (2005) Modeling of transport and transformation processes in porous and multiphase bodies, in Multiscale Analysis in Advances in Chemical Engineering, G. Marin (ed.), Elsevier, pp. 137–203. [CrossRef] [Google Scholar]
  • Reyes S., Iglesia E. (1991) Effective diffusivities in catalyst pellets: new model porous structures and transport simulation techniques, Journal of Catalysis 129, 2, 457–472. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Štěpánek F., Ansari M.A. (2005) Computer simulation of granule microstructure formation, Chemical Engineering Science 60, 14, 4019–4029. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Koci P., Novak V., Stepanek F., Marek M., Kubicek M. (2010) Multi-scale modelling of reaction and transport in porous catalysts, Chemical Engineering Science 65, 1, 412–419. 20th International Symposium on Chemical Reaction Engineering – Green Chemical Reaction Engineering for a Sustainable Future, 7-10 September, Kyoto, Japan. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Yeong C., Torquato S. (1998) Reconstructing random media, Physical Review E 57, 1, 495–506. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Rozman M., Utz M. (2001) Efficient reconstruction of multiphase morphologies from correlation functions, Physical Review E 63, 6, 066701. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Jeulin D. (2012) Morphology and effective properties of multi-scale random sets: a review, Comptes Rendus Mécanique 340, 4-5, 219–229. [CrossRef] [Google Scholar]
  • Adler P., Jacquin C., Quiblier J. (1990) Flow in simulated porous-media, International Journal of Multiphase Flow 16, 4, 691–712. [CrossRef] [Google Scholar]
  • Diaz I., Gonzalez-Pena V., Marquez-Alvarez C., Kikkinides E. (2004) Transmission electron microscopy combined with stochastic reconstruction methods for structural characterization of porous alumina synthesized via non-ionic surfactant-templating route, Microporous and Mesoporous Materials 68, 1-3, 11–19. [CrossRef] [Google Scholar]
  • Koci P., Stepanek F., Kubicek M., Marek M. (2006) Meso-scale modelling of CO oxidation in digitally reconstructed porous Pt/gamma-Al2O3 catalyst, Chemical Engineering Science 61, 10, 3240–3249. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Youssef S., Rosenberg E., Gland N., Kenter J., Skalinski M., Vizika O. (2007) High resolution CT and pore-network models to assess petrophysical properties of homogeneous and heterogeneous carbonates, in SPE/EAGE Reservoir Characterization and Simulation Conference. [Google Scholar]
  • Rigby S., Gladden L. (1999) The prediction of transport properties of porous media using fractal models and NMR experimental techniques, Chemical Engineering Science 54, 15-16, 3503–3512, 15th International Symposium on Chemical Reaction Engineering (ISCRE 15), 13-16 September, 1998, Newport Beach, CA. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Euzen P., Raybaud P., Krokidis X., Toulhoat H., Le Loarer J.-L., Jolivet J.-P., Froidefond C. (2002) Alumina, in Handbook of porous solids, F. Schüth, K. Sing, J. Weitkamp (eds), Wiley-VCH, Weinheim, pp. 1591–1677. [CrossRef] [Google Scholar]
  • Digne M., Sautet P., Raybaud P., Euzen P., Toulhoat H. (2004) Use of DFT to achieve a rational understanding of acid-basic properties of γ-alumina surfaces, Journal of Catalysis 226, 1, 54–68. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Chiche D., Digne M., Revel R., Chanéac C., Jolivet J.-P. (2008) Accurate determination of oxide nanoparticle size and shape based on X-ray powder pattern simulation: application to boehmite AlOOH, The Journal of Physical Chemistry C 112, 23, 8524–8533. [CrossRef] [Google Scholar]
  • Rozita Y., Brydson R., Comyn T., Scott A., Hammond C., Brown A., Chauruka S., Hassanpour A., Young N., Kirkland A., Sawada H., Smith R. (2013) A Study of Commercial Nanoparticulate γ-Al2O3 Catalyst Supports, ChemCatChem 5, 9, 2695–2706. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Klimov O., Leonova K., Koryakina G., Gerasimov E., Prosvirin I., Cherepanova S., Budukva S., Pereyma V., Dik P., Parakhin O., Noskov A. (2014) Supported on alumina Co-Mo hydrotreating catalysts: Dependence of catalytic and strength characteristics on the initial AlOOH particle morphology, Catalysis Today 220, 66–77. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Pardo P., Montoya N., Alarcón J. (2015) Tuning the size and shape of nano-boehmites by a free-additive hydrothermal method, CrystEngComm 17, 10, 2091–2100. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Lee J., Jeon H., Oh D., Szanyi J., Kwak J. (2015) Morphology-dependent phase transformation of γ-Al2O3, Applied Catalysis A: General 500, 58–68. [CrossRef] [Google Scholar]
  • Moreaud M., Jeulin D., Morard V., Revel R. (2012) TEM image analysis and modelling: application to boehmite nanoparticles, Journal of Microscopy 245, 2, 186–199. [CrossRef] [PubMed] [Google Scholar]
  • Wang H., Pietrasanta A., Jeulin D., Willot F., Faessel M., Sorbier L., Moreaud M. (2015) Modelling mesoporous alumina microstructure with 3D random models of platelets, Journal of Microscopy 260, 3, 287–301. [CrossRef] [PubMed] [Google Scholar]
  • Mu D., Liu Z.-S., Huang C., Djilali N. (2007) Prediction of the effective diffusion coefficient in random porous media using the finite element method, Journal of Porous Materials 14, 1, 49–54. [CrossRef] [Google Scholar]
  • Moulinec H., Suquet P. (1994) A fast numerical method for computing the linear and nonlinear mechanical properties of composites, Comptes rendus de l’Académie des sciences. Série II, Mécanique, physique, chimie, astronomie 318, 11, 1417–1423. [Google Scholar]
  • Willot F., Abdallah B., Pellegrini Y.-P. (2014) Fourier-based schemes with modified Green operator for computing the electrical response of heterogeneous media with accurate local fields, International Journal for Numerical Methods in Engineering 98, 7, 518–533. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Hashin Z., Shtrikman S. (1963) A variational approach to the theory of the elastic behaviour of multiphase materials, Journal of the Mechanics and Physics of Solids 11, 2, 127–140. [CrossRef] [MathSciNet] [Google Scholar]
  • Brunauer S., Emmett P., Teller E. (1938) Adsorption of gases in multimolecular layers, Journal of the American Chemical Society 60, 2, 309–319. [CrossRef] [Google Scholar]
  • Wu D.H., Chen A.D., Johnson C.S. (1995) An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses, Journal of Magnetic Resonance, Series A 115, 2, 260–264. [CrossRef] [Google Scholar]
  • Archie G.E. (1942) The electrical resistivity log as an aid in determining some reservoir characteristics, Transactions of the AIME 146, 01, 54–62. [CrossRef] [Google Scholar]
  • Titze T., Lauerer A., Heinke L., Chmelik C., Zimmermann N.E., Keil F.J., Ruthven D.M., Kärger J. (2015) Transport in nanoporous materials including MOFs: The applicability of Fick’s laws, Angewandte Chemie International Edition 54, 48, 14580–14583. [CrossRef] [Google Scholar]
  • Bruggeman D.A.G. (1935) Calculation of various physics constants in heterogenous substances I dielectricity constants and conductivity of mixed bodies from isotropic substances, Annals of Physics 24, 7, 636–664. [NASA ADS] [CrossRef] [Google Scholar]
  • Kanaun S.K., Levin V. (2003) Self-Consistent Methods for Composites: Vol. 1 – Static Problems, Springer, Dordrecht. [Google Scholar]
  • D’Agostino C., Chansai S., Bush I., Gao C., Mantle M.D., Hardacre C., James S.L., Gladden L.F. (2016) Assessing the effect of reducing agents on the selective catalytic reduction of NOx over Ag/Al2O3 catalysts, Catalysis Science & Technology 6, 6, 1661–1666. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.