Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Number 4, Juillet–Août 2016
Article Number 47
Number of page(s) 19
Published online 20 April 2016
  • Aiuppa A., Federico C., Allard P., Gurrieri S., Valenza M. (2005) Trace metal modeling of groundwater-gas-rock interactions in a volcanic aquifer: Mount Vesuvius, Southern Italy, Chemical Geology 216, 289–311. [CrossRef] [Google Scholar]
  • Appelo C.A.J., Postma D. (1993) Geochemistry, groundwater and pollution, A.A. Balkema (ed.). Brookfield, VT. [Google Scholar]
  • Armstrong J.T. (1988) Quantitative analysis of silicate and oxide materials: Comparison of Monte Carlo, ZAF, and Φ(ρz) procedures, Microbeam Analysis, San Francisco Press. [Google Scholar]
  • Auffray B., Garcia B., Lienemann C.-P., Sorbier L., Cerepi A. (2016) Zn(II), Mn(II) and Sr(II) behavior in natural carbonate reservoir system. Part II : impact of geological CO2 storage conditions, submitted to Oil & Gas Science and Technology. [Google Scholar]
  • Behar F., Beaumont V., Penteado H.L.D.B. (2001) Rock-Eval 6 Technology: Performances and Developments, Revue de l’Institut Français du Pétrole 56, 111–134. [Google Scholar]
  • Bourgueil B., Gabilly J. (1971) Carte géologique de la France n° 590 à 1/50 000, Chauvigny. [Google Scholar]
  • Bruno J., Duro L., de Pablo J., Casas I., Ayora C., Delgado J., Gimeno M.J., Peña J., Linklater C., Pérez del Villar L., Gomez P. (1998) Estimation of the concentrations of trace metals in natural systems: The application of codissolution and coprecipitation approaches to El Berrocal (Spain) and Poços de Caldas (Brazil), Chemical Geology 151, 277–291. [CrossRef] [Google Scholar]
  • Cerepi A. (1997) Milieux poreux matriciel, fractures et teneur en eau d’un calcaire en zone de diagenèse météorique : Calcaire à astéries “Pierre de Bordeaux”, Oligocène (Bordeaux, France), Ph.D. Thesis. [Google Scholar]
  • Coto B., Martos C., Peña J.L., Rodríguez R., Pastor G. (2012) Fluid Phase Equilibria Effects in the solubility of CaCO3: Experimental study and model description, Fluid Phase Equilibria 324, 1–7. [CrossRef] [Google Scholar]
  • Curti E. (1999) Coprecipitation of radionuclides with calcite: estimation of partition coefficients based on a review of laboratory investigations and geochemical data, Applied Geochemistry 14, 433–445. [CrossRef] [Google Scholar]
  • Daval D., Martinez I., Corvisier J., Findling N., Goffé B., Guyot F. (2009) Carbonation of Ca-bearing silicates, the case of wollastonite: Experimental investigations and kinetic modeling, Chemical Geology 265, 63–78. [CrossRef] [Google Scholar]
  • Davis J.A., Kent D.B. (1990) Surface Complexation Modeling in Aqueous Geochemistry, Reviews in Mineralogy and Geochemistry 23. [Google Scholar]
  • De Lucia M., Bauer S., Beyer C., Kühn M., Nowak T., Pudlo D., Reitenbach V., Stadler S. (2012) Modelling CO2-induced fluid-rock interactions in the Altensalzwedel gas reservoir. Part I: from experimental data to a reference geochemical model, Environmental Earth Sciences 67, 563–572. [CrossRef] [Google Scholar]
  • Dove P.M., Hochella M.F. Jr (1993) Calcite precipitation mechanisms and inhibition by orthophosphate: In situ observations by Scanning Force Microscopy, Geochimica et Cosmochimica Acta 57, 705–714. [CrossRef] [Google Scholar]
  • Elzinga E.J., Reeder R.J. (2002) X-ray absorption spectroscopy study of Cu2+ and Zn2+ adsorption complexes at the calcite surface: Implications for site-specific metal incorporation preferences during calcite crystal growth, Geochimica et Cosmochimica Acta 66, 3943–3954. [CrossRef] [Google Scholar]
  • Fenter P., Geissbühler P., DiMasi E., Srajer G., Sorensen L.B., Sturchio N.C. (2000) Surface speciation of calcite observed in situ by high-resolution X-ray reflectivity, Geochimica et Cosmochimica Acta 64, 1221–1228. [CrossRef] [Google Scholar]
  • Freij S.J., Godelitsas A., Putnis A. (2005) Crystal growth and dissolution processes at the calcite-water interface in the presence of zinc ions, Journal of Crystal Growth 273, 535–545. [CrossRef] [Google Scholar]
  • Garcia B., Beaumont V., Perfetti E., Rouchon V., Blanchet D., Oger P., Dromart G., Huc A., Haeseler F. (2010) Experiments and geochemical modelling of CO2 sequestration by olivine: Potential, quantification, Applied Geochemistry 25, 1383–1396. [CrossRef] [Google Scholar]
  • Glasner A., Weiss D. (1980) The crystallization of calcite from aqueous solutions and the role of zinc and magnesium ions - I. Precipitation of calcite in the presence of Zn2+ ions, Journal of Inorganic and Nuclear Chemistry 42, 655–663. [CrossRef] [Google Scholar]
  • Hillner P.E., Manne S., Gratz A.J., Hansma P.K. (1992) AFM images of dissolution and growth on a calcite crystal, Ultramicroscopy 42–44, 2, 1387–1393. [CrossRef] [Google Scholar]
  • IPCC (2005) Special Report on Carbon Capture and Storage. [Google Scholar]
  • Johnson J.W., Oelkers E.H., Helgeson H.C. (1992) SUPCRT92: A software package for calculating the standard molal thermodynamic properties of mineral, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C, Computer & Geosciences 18, 899–947. [CrossRef] [Google Scholar]
  • Kharaka Y.K., Cole D.R., Hovorka S.D., Gunter W.D., Knauss K.G., Freifield B.M. (2006) Gas-water-rock interactions in Frio Formation following CO2 injection: Implications for the storage of greenhouse gases in sedimentary basins, Geology 34, 577–580. [CrossRef] [Google Scholar]
  • Kharaka Y.K., Thordsen J.J., Hovorka S.D., Nance H.S., Cole D.R., Phelps T.J., Knauss K.G. (2009) Potential environmental issues of CO2 storage in deep saline aquifers: Geochemical results from the Frio-I Brine Pilot test, Texas, USA, Applied Geochemistry 24, 1106–1112. [CrossRef] [Google Scholar]
  • Lafargue E., Marquis F., Pillot D. (1998) Rock-Eval 6 Applications in Hydrocarbon Exploration, Production, and Soil Contamination Studies, Revue de l’Institut Français du Pétrole 53, 421–437. [Google Scholar]
  • Lakshtanov L.Z., Stipp S.L.S. (2007) Experimental study of nickel(II) interaction with calcite: Adsorption and coprecipitation, Geochimica et Cosmochimica Acta 71, 3686–3697. [CrossRef] [Google Scholar]
  • Le Pape P., Ayrault S., Quantin C. (2012) Trace element behavior and partition versus urbanization gradient in an urban river (Orge River, France), Journal of Hydrology 472–473, 99–110. [CrossRef] [Google Scholar]
  • Little M.G., Jackson R.B. (2010) Potential impacts of leakage from deep CO2 geosequestration on overlying freshwater aquifers, Environmental Science and Technology 44, 9225–32. [CrossRef] [Google Scholar]
  • Loisy C., Cohen G., Laveuf C., Le Roux O., Delaplace P., Magnier C., Rouchon V., Cerepi A., Garcia B. (2013) The CO2-Vadose Project: Dynamics of the natural CO2 in a carbonate vadose zone, International Journal of Greenhouse Gas Control 14, 97–112. [CrossRef] [Google Scholar]
  • Lorens R.B. (1981) Sr, Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate, Geochimica et Cosmochimica Acta 45, 553–561. [Google Scholar]
  • Martin-Garin A., van Cappellen P., Charlet L. (2003) Aqueous cadmium uptake by calcite: A stirred flow-through reactor study, Geochimica et Cosmochimica Acta 67, 2763–2774. [CrossRef] [Google Scholar]
  • Morris M.C., McMurdie H.F., Evans E.H., Paretzkin B., Parker H.S., Panagiotopoulos N.C. (1981) Standard X-ray Diffraction Powder Patterns, NBS Monograph 25, Section 18. [Google Scholar]
  • Mucci A. (1986) Growth kinetics and composition of magnesian calcite overgrowths precipitated from seawater: Quantitative influence of orthophosphate ions, Geochimica et Cosmochimica Acta 50, 2255–2265. [Google Scholar]
  • Parkhurst D.L., Appelo C.A.J. (1999) User’s guide to PHREEQC (version 2) - A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. [Google Scholar]
  • Parkhurst D.L., Appelo C.A.J. (2013) Description of Input and Examples for PHREEQC Version 3 - A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. [Google Scholar]
  • Pauwels H., Gaus I., Le Nindre Y.M., Pearce J., Czernichowski-Lauriol I. (2007) Chemistry of fluids from a natural analogue for a geological CO2 storage site (Montmiral, France): Lessons for CO2-water-rock interaction assessment and monitoring, Applied Geochemistry 22, 2817–2833. [CrossRef] [Google Scholar]
  • Pérez del Villar L., Bruno J., Campos R., Gomez P., Cozar J.S., Garralon A., Buil B., Arcos D., Carretero G., Ruiz Sanchez-Porro J., Hernan P. (2002) The uranium ore from Mina Fe (Salamanca, Spain) as a natural analogue of processes in a spent fuel repository, Chemical Geology 190, 395–415. [CrossRef] [Google Scholar]
  • Pingitore N.E.J., Eastman M.P. (1984) The experimental partitioning of Ba2+ into calcite, Chemical Geology 45, 113–120. [CrossRef] [Google Scholar]
  • Pingitore N.E.J., Eastman M.P. (1986) The coprecipitation of Sr2+ with calcite at 25°C and 1 atm, Geochimica et Cosmochimica Acta 50, 2195–2203. [CrossRef] [Google Scholar]
  • Pingitore N.E.J., Eastman M.P., Sandidge M., Oden K., Freiha B. (1988) The coprecipitation of manganese(II) with calcite: an experimental study, Marine Chemistry 25, 107–120. [CrossRef] [Google Scholar]
  • Pokrovsky O.S., Mielczarski J.A., Barres O., Schott J. (2000) Surface Speciation Models of Calcite and Dolomite/Aqueous Solution Interfaces and Their Spectroscopic Evaluation, Langmuir 16, 2677–2688. [CrossRef] [Google Scholar]
  • Preis W., Gamsjäger H. (2001) Solid + solute) phase equilibria in aqueous solution. XIII. Thermodynamic properties of hydrozincite and predominance diagrams for (Zn2+ + H2O + CO2, Journal of Chemical Thermodynamics 33, 803–819. [CrossRef] [Google Scholar]
  • Reeder R.J. (1983) Carbonates: Mineralogy and Chemistry, Mineralogical Society of America. [Google Scholar]
  • Reeder R.J. (1996) Interaction of divalent cobalt, zinc, cadmium, and barium with the calcite surface during layer growth, Geochimica et Cosmochimica Acta 60, 1543–1552. [CrossRef] [Google Scholar]
  • Smyth R.C., Hovorka S.D., Lu J., Romanak K.D., Partin J.W., Wong C., Yang C. (2009) Assessing risk to fresh water resources from long term CO2 injection - laboratory and field studies, Energy Procedia 1, 1957–1964. [CrossRef] [Google Scholar]
  • Stipp S.L., Hochella M.F. (1991) Structure and bonding environments at the calcite surface as observed with X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED), Geochimica et Cosmochimica Acta 55, 1723–1736. [CrossRef] [Google Scholar]
  • Stipp S.L.S. (1999) Toward a conceptual model of the calcite surface: Hydration, hydrolysis, and surface potential, Geochimica et Cosmochimica Acta 63, 3121–3131. [CrossRef] [Google Scholar]
  • Sverjensky D.A. (2003) Standard states for the activities of mineral surface sites and species, Geochimica et Cosmochimica Acta 67, 17–28. [CrossRef] [Google Scholar]
  • Swanson H.E., Fuyat R.K., Ugrinic G.M. (1954) NBS Circular 539, Vol. 3 - Data for 34 inorganic substances. [Google Scholar]
  • Tertre E., Beaucaire C., Juery A., Ly J. (2010) Methodology to obtain exchange properties of the calcite surface - Application to major and trace elements: Ca(II), HCO3-, and Zn(II), Journal of Colloid and Interface Science 347, 120–126. [CrossRef] [PubMed] [Google Scholar]
  • Tsusue A., Holland H.D. (1966) The coprecipitation of cations with CaCO3 - III. The coprecipitation of Zn2+ with calcite between 50 and 250°C, Geochimica et Cosmochimica Acta 30, 439–440. [CrossRef] [Google Scholar]
  • Villegas-Jiménez A., Mucci A., Paquette J. (2009a) Proton/calcium ion exchange behavior of calcite, Physical Chemistry Chemical Physics 11, 8895–8912. [CrossRef] [Google Scholar]
  • Villegas-Jiménez A., Mucci A., Pokrovsky O.S., Schott J. (2009b) Defining reactive sites on hydrated mineral surfaces: Rhombohedral carbonate minerals, Geochimica et Cosmochimica Acta 73, 4326–4345. [CrossRef] [Google Scholar]
  • Viswanathan H., Dai Z., Lopano C., Keating E., Hakala J.A., Scheckel K.G., Zheng L., Guthrie G.D., Pawar R. (2012) Developing a robust geochemical and reactive transport model to evaluate possible sources of arsenic at the CO2 sequestration natural analog site in Chimayo, New Mexico, International Journal of Greenhouse Gas Control 10, 199–214. [CrossRef] [Google Scholar]
  • Wright K., Cygan R.T., Slater B. (2001) Structure of the (101̄4) surfaces of calcite, dolomite and magnesite under wet and dry conditions, Physical Chemistry Chemical Physics 3, 839–844. [Google Scholar]
  • Zachara J.M., Cowan C.E., Resch C.T. (1991) Sorption of divalent metals on calcite, Geochimica et Cosmochimica Acta 55, 1549–1562. [CrossRef] [Google Scholar]
  • Zachara J.M., Kittrick J.A., Harsh J.B. (1988) The mechanism of Zn2+ adsorption on calcite, Geochimica et Cosmochimica Acta 52, 2281–2291. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.