Dossier: Characterisation and Modeling of Low Permeability Media and Nanoporous Materials
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Number 4, Juillet–Août 2016
Dossier: Characterisation and Modeling of Low Permeability Media and Nanoporous Materials
Article Number 46
Number of page(s) 8
Published online 23 June 2016
  • Yang J., Crawshaw J., Boek E.S. (2013) Quantitative determination of molecular propagator distributions for solute transport in homogeneous and heterogeneous porous media using lattice Boltzmann simulations, Water Resources Research 49, 12, 8531–8538. [CrossRef] [Google Scholar]
  • Yang J., Boek E.S. (2013) A comparison study of multi-component Lattice Boltzmann models for flow in porous media applications, Computers & Mathematics with Applications 65, 6, 882–890. [CrossRef] [MathSciNet] [Google Scholar]
  • Boek E.S., Venturoli M. (2010) Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries, Computers and Mathematics with Applications 59, 7, 2305–2314. [CrossRef] [MathSciNet] [Google Scholar]
  • Stukan M.R., Ligneul P., Crawshaw J.P., Boek E.S. (2010) Spontaneous imbibition in nanopores of different roughness and wettability, Langmuir 26, 16, 13342–13352. [CrossRef] [PubMed] [Google Scholar]
  • Stukan M.R., Ligneul P., Boek E.S. (2012) Molecular Dynamics Simulation of Spontaneous Imbibition in Nanopores and Recovery of Asphaltenic Crude Oils Using Surfactants for EOR Applications, Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 67, 5, 737–742. [Google Scholar]
  • Falk K., Sedlmeier F., Joly L., Netz R.R., Bocquet L. (2010) Molecular Origin of Fast Water Transport in Carbon Nanotube Membranes: Superlubricity versus Curvature Dependent Friction, Nano Letters 10, 10, 4067–4073. [CrossRef] [PubMed] [Google Scholar]
  • Koplik J., Banavar J.R., Willemsen J.F. (1989) Molecular dynamics of fluid flow at solid surfaces, Physics of Fluids A: Fluid Dynamics 1, 781. [CrossRef] [Google Scholar]
  • Barrat J.-L., Bocquet L. (1999) Large Slip Effect at a Nonwetting Fluid-Solid Interface, Physical Review Letters 82, 23, 4671–4674. [Google Scholar]
  • Cieplak M., Koplik J., Banavar J. (2001) Boundary Conditions at a Fluid-Solid Interface, Physical Review Letters 86, 5, 803–806. [CrossRef] [PubMed] [Google Scholar]
  • Galea T.-M., Attard P. (2004) Molecular dynamics study of the effect of atomic roughness on the slip length at the fluid-solid boundary during shear flow, Langmuir 20, 8, 3477–3482. [CrossRef] [PubMed] [Google Scholar]
  • Sokhan V.P., Nicholson D., Quirke N. (2001) Fluid flow in nanopores: An examination of hydrodynamic boundary conditions, The Journal of Chemical Physics 115, 8, 3878. [CrossRef] [Google Scholar]
  • Sokhan V.P., Nicholson D., Quirke N. (2002) Fluid flow in nanopores: Accurate boundary conditions for carbon nanotubes, The Journal of Chemical Physics 117, 18, 8531. [CrossRef] [Google Scholar]
  • Kannam S.K., Todd B.D., Hansen J.S., Daivis Peter J. (2013) How fast does water flow in carbon nanotubes? The Journal of Chemical Physics 138, 9, 094701. [CrossRef] [PubMed] [Google Scholar]
  • Hansen J.S., Todd B.D., Daivis P.J. (2011) Prediction of fluid velocity slip at solid surfaces, Physical Review E 84, 1, 016313. [CrossRef] [Google Scholar]
  • Pronk S., Páll S., Schulz R., Larsson P., Bjelkmar P., Apostolov R., Shirts M.R., Smith J.C., Kasson P.M., van der Spoel D., Hess B., Lindahl E. (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit, Bioinformatics (Oxford, England) 29, 7, 845–854. [CrossRef] [PubMed] [Google Scholar]
  • Thompson P.A., Troian S.M. (1997) A general boundary condition for liquid flow at solid surfaces, Nature 389, 6649, 360–362. [CrossRef] [Google Scholar]
  • Bocquet L., Barrat J.-L. (2007) Flow boundary conditions from nano- to micro-scales, Soft Matter 3, 6, 685–693. [CrossRef] [Google Scholar]
  • Zwanzig R. (1965) Time-Correlation Functions and Transport Coefficients in Statistical Mechanics, Annu. Rev. Phys. Chem. 16, 67–102. [CrossRef] [Google Scholar]
  • Jorgensen W.L., Tirado-Rives J. (1988) The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin, Journal of the American Chemical Society 110, 6, 1657–1666. [CrossRef] [PubMed] [Google Scholar]
  • Berendsen H.J.C., Grigera J.R., Straatsma T.P. (1987) The missing term in effective pair potentials, The Journal of Physical Chemistry 91, 24, 6269–6271. [Google Scholar]
  • Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. (1983) Comparison of simple potential functions for simulating liquid water, The Journal of Chemical Physics 79, 2, 926. [Google Scholar]
  • MATLAB (2014) version 8.3 (R2014a). The MathWorks Inc., Natick, Massachusetts. [Google Scholar]
  • Bussi G., Donadio D., Parrinello M. (2007) Canonical sampling through velocity rescaling, The Journal of Chemical Physics 126, 1, 014101. [Google Scholar]
  • Nosé S. (1984) A molecular dynamics method for simulations in the canonical ensemble, Molecular Physics 52, 2, 255–268. [Google Scholar]
  • Hoover W. (1985) Canonical dynamics: Equilibrium phase-space distributions, Physical Review A 31, 3, 1695–1697. [Google Scholar]
  • Falk K., Sedlmeier F., Joly L., Netz R.R., Bocquet L. (2012) Ultralow Liquid/Solid Friction in Carbon Nanotubes: Comprehensive Theory for Alcohols, Alkanes, OMCTS, and Water, Langmuir 28, 40, 14261–14272. [CrossRef] [PubMed] [Google Scholar]
  • Supple S., Quirke N. (2005) Molecular dynamics of transient oil flows in nanopores. II. Density profiles and molecular structure for decane in carbon nanotubes, The Journal of Chemical Physics 122, 10, 104706. [CrossRef] [PubMed] [Google Scholar]
  • Chen W., Zhang R., Koplik J. (2014) Velocity slip on curved surfaces, Physical Review E 89, 2, 023005. [CrossRef] [Google Scholar]
  • Petravic J., Harrowell P. (2007) On the equilibrium calculation of the friction coefficient for liquid slip against a wall, The Journal of Chemical Physics 127, 17, 174706. [CrossRef] [PubMed] [Google Scholar]
  • Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F., DiNola A., Haak J.R. (1984) Molecular dynamics with coupling to an external bath, The Journal of Chemical Physics 81, 8, 3684. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.