Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Number 4, Juillet–Août 2016
Article Number 48
Number of page(s) 13
Published online 20 April 2016
  • Albritton D.L., Meira Filho L.G. (2001) Contribution of Working Group I Third Assessment Report on Intergovernmental Panel on Climate Change, in Climate Change 2001: the Scientific Basis, Cambridge, Cambridge Univ. Press, UK and New York, USA. [Google Scholar]
  • Auffray B., Garcia B., Lienemann C.-P., Sorbier L., Cerepi A. (2016) Zn(II), Mn(II) and Sr(II) Behavior in Natural Carbonate Reservoir System. Parti I: Impact of Salinity, Initial pH and Initial Zn(II) Concentration in Atmospheric Conditions, Oil & Gas, Science and Technology 71, 47. [Google Scholar]
  • Bachaud P., Berne P., Renard F., Sardin M., Leclerc J.P. (2011) Use of tracers to characterize the effects of a CO2-saturated brine on the petrophysical properties of a low permeability carbonate caprock, Chemical Engineering Research and Design 89, 1817–1826. [CrossRef] [Google Scholar]
  • Bateman A.S., Kelly S.D., Jickells T.D. (2005) Nitrogen isotope relationships between crops and fertilizer: Implications for using nitrogen isotope analysis as an indicator of agricultural regime, Journal of Agricultural and Food Chemistry 53, 5760–5765. [CrossRef] [PubMed] [Google Scholar]
  • Bentham M., Kirby G. (2005) CO2 Storage in Saline Aquifers, Oil & Gas Science and Technology 60, 3, 559–567. [CrossRef] [EDP Sciences] [Google Scholar]
  • Bethke C.M. (2008) Geochemical and Biogeochemical reaction modeling, Cambridge University Press, New York. [Google Scholar]
  • Bryant E. (1997) Climate Process and Change, Cambridge University Press, Cambridge. [CrossRef] [Google Scholar]
  • Chadwick A., Noy D., Lindeberg E., Arts R., Eiken O., Williams G. (2006) Calibrating reservoir performance with time-lapse seismic monitoring and flow simulations of the Sleipner CO2 plume, Proceedings of the 8th International Conference on Greenhouse Gas Control Technologies, Trondheim, Norway, June 19-22. [Google Scholar]
  • Cohen G., Loisy C., Laveuf C., Le Roux O., Delaplace P., Magnier C., Rouchon V., Garcia B., Cerepi A. (2013) The CO2-Vadose project: Experimental study and modelling of CO2 induced leakage and tracers associated in the carbonate vadose zone, International Journal of Greenhouse Gas Control 14, 128–140. [CrossRef] [Google Scholar]
  • Czernichowski-Lauriol I., Rochelle C., Gaus I., Azaroual M., Pearce J., Durst J. (2006) Geochemical interactions between CO2, pore-waters and reservoir rocks - Lessons learned from laboratory experiments, field studies and computer simulations, NATO Science Series IV Earth and Environmental Sciences 65, 157–174. [CrossRef] [Google Scholar]
  • Dzombak D.A., Morel F.M.M. (1990) Surface Complexation Modeling: Hydrous Ferric Oxide, Wiley-Interscience, New York. [Google Scholar]
  • Emberley S., Hutcheon I., Shevalier N., Durocher K., Mayer B., Gunter W.D., Perkins E.H. (2005) Monitoring of fluid-rock interaction and CO2 storage through produced fluid sampling at the Weyburn CO2-injection enhanced oil recovery site, Saskatchewan, Canada, Applied Geochemistry 20, 1131–1157. [CrossRef] [Google Scholar]
  • Fischer R., Lorenz M., Köhl M., Mues V., Granke O., Iost S., van Dobben H., Reinds G.J., de Vries W. (2010) The condition of forests in Europe, ICP Forests, 2010 Executive Report, Hamburg, Germany, and European Commission, Brussels, Belgium. [Google Scholar]
  • Gale J.F.W., Laubach S.E., Marrett R.A., Olson J.E., Holder J., Reed R.M. (2004) Predicting and characterizing fractures in dolostone reservoirs: Using the link between diagenesis and fracturing, in The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs, Braithwaite C.J.R., Rizzi G., Darke G. (eds.), Geological Society (London) Special Publication 235. [Google Scholar]
  • Garcia B., Beaumont V., Perfetti E., Rouchon V., Blanchet D., Oger P., Dromart G., Huc A., Haeseler F. (2010) Experiments and geochemical modelling of CO2 sequestration by olivine: Potential, quantification, Applied Geochemistry 25, 1383–1396. [CrossRef] [Google Scholar]
  • Garcia B., Hy Billiot J., Rouchon V., Mouronval G., Lescanne M., Lachet V., Aimard N. (2012) A Geochemical Approach for Monitoring a CO2 Pilot Site: Rousse, France. A Major gases, CO2-carbon isotopes and Noble Gases Combined Approach, Oil Gas Science and Technology 67, 341–353. [CrossRef] [EDP Sciences] [Google Scholar]
  • Garcia B., Delaplace P., Rouchon V., Magnier C., Loisy C., Cohen G., Laveuf C., Le Roux O., Cerepi A. (2013) The CO2-vadose project: Numerical modeling to perform a geochemical monitoring methodology and baseline performance assessment for various geochemical variables (gas flux, gas composition, stable isotopes and noble gases) in the carbonate vadose zone, International Journal of Greenhouse Gas Control 14, 247–258. [CrossRef] [Google Scholar]
  • Gaus I. (2010) Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks, International Journal of Greenhouse Gas Control 4, 73–89. [Google Scholar]
  • Gaus I., Audigane P., André L., Lions J., Jacquemet N., Durst P., Czernichowski-Lauriol I., Azaroual M. (2008) Geochemical and solute transport modelling for CO2 storage, what to expect from it? International Journal of Greenhouse Gas Control 2, 605–625. [CrossRef] [Google Scholar]
  • Gunter W.D., Genetzis T., Rottenfuser Richardson R.J.H. (1997) Deep coalbed methane in Alberta Canada: A fuel resource with the potential of zero greenhouse gas emissions, Energy Conservation and Management 38S, 217–222. [CrossRef] [Google Scholar]
  • Harvey O.R., Qafoku N.P., Cantrell K.J., Lee G., Amonette J.E., Brown C.F. (2013) Geochemical Implications of Gas Leakage associated with Geologic CO2 storage - A Qualitative Review, Environmental Science and Technology 47, 23–26. [CrossRef] [Google Scholar]
  • Hepple R.P., Benson S.M. (2005) Geologic storage of carbon dioxide as a climate change mitigation strategy: performance requirements and the implications of surface seepage, Environmental Geology 47, 4, 576–585. [CrossRef] [Google Scholar]
  • Holloway S. (1997) An overview of the underground disposal of carbon dioxide, Energy Conversion and Management 38, 193–198. [CrossRef] [Google Scholar]
  • IPCC (2007) Special Report on Carbon Capture and Storage. [Google Scholar]
  • Kaszuba J.P., Janecky D.R., Snow M.G. (2003) Carbon dioxide reaction processes in a model brine aquifer at 200 C and 200 bars: implications for geologic sequestration of carbon, Applied Geochemistry 18, 1065–1080. [Google Scholar]
  • Kharaka Y.K., Cole D.R., Hovorka S.D., Gunter W.D., Knauss K.G., Freifield B.M. (2006) Gas-water-rock interactions in Frio Formation following CO2 injection: Implications for the storage of greenhouse gases in sedimentary basinsn, Geology 34, 577–580. [CrossRef] [Google Scholar]
  • Kharaka Y.K., Thordsen J.J., Hovorka S.D., Nance H.S., Cole D.R., Phelps T.J., Knauss K.G. (2009) Potential environmental issues of CO2 storage in deep saline aquifers: Geochemical results from the Frio-I Brine Pilot test, Texas, USA, Applied Geochemistry 24, 1106–1112. [CrossRef] [Google Scholar]
  • Krupka K.M., Cantrell K.J., McGrail B.P. (2010) Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration - Literature Review, in Report PNNL-19766. [Google Scholar]
  • Le Roux O., Cohen G., Loisy C., Laveuf C., Delaplace P., Magnier C., Rouchon V., Cerepi A., Garcia B. (2013) The CO2-Vadose project: Time-lapse geoelectrical monitoring during CO2 diffusion in the carbonate vadose zone, International Journal of Grennhouse Gas Control 16, 156–166. [CrossRef] [Google Scholar]
  • Li Y., Wardlaw N.C. (1986) Mechanisms of Nonwetting Phase Trapping during Imbibition at Slow Rates, Journal of Colloid and Interface Science 109, 473–486. [CrossRef] [Google Scholar]
  • Little M.G., Jackson R.B. (2010) Potential impacts of leakage from deep CO2 geosequestration on overlying freshwater aquifers, Environmental Science and Technology 44, 9225–9232. [CrossRef] [Google Scholar]
  • Loisy C., Cohen G., Laveuf C., Le Roux O., Delaplace P., Magnier C., Rouchon V., Cerepi A., Garcia B. (2013) The CO2-Vadose Project: Dynamics of the natural CO2 in a carbonate vadose zone, International Journal of Greenhouse Gas Control 14, 97–112. [CrossRef] [Google Scholar]
  • Lowell S., Shields J.E. (1984) Powder Surface Area and Porosity, Chapman and Hall. [CrossRef] [Google Scholar]
  • Lu J., Kharaka Y.K., Thordsen J.J., Horita J., Karamalidis A., Griffith C., Hakala J.A., Ambats G., Cole D.R., Phelps T.J., Manning M.A., Cook P.J., Hovorka S.D. (2012) CO2-rock-brine interactions in Lower Tuscaloosa Formation at Cranfield CO2 sequestration site, Mississippi, U.S.A, Chemical Geology 291, 269–277. [CrossRef] [Google Scholar]
  • Martin-Garin A., van Cappellen P., Charlet L. (2003) Aqueous cadmium uptake by calcite: A stirred flow-through reactor study, Geochimica et Cosmochimica Acta 67, 2763–2774. [CrossRef] [Google Scholar]
  • McGrail B.P., Schaef H.T., Ho A.M., Chien Y.-J., Dooley J.J., Davidson C.L. (2006) Potential for carbon dioxide sequestration in flood basalts, Journal of Geophysical Research 111, B12201. [CrossRef] [Google Scholar]
  • Parkhurst D.L., Appelo C.A.J. (2013) Description of Input and Examples for PHREEQC Version 3 - A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. [Google Scholar]
  • Qafoku N.P., Brown C.F., Wang G., Sullivan C., Lawter A.R., Harvey O.R., Bowden M. (2013) Geochemical Impacts of Leaking CO2 from Subsurface Storage Reservoirs to Unconfined and Confined Aquifers. Report PNNL-22420. [Google Scholar]
  • Rempel K.U., Liebscher A., Heinrich W., Schettler G. (2011) An experimental investigation of trace element dissolution in carbon dioxide: Applications to the geological storage of CO2, Chemical Geology 289, 224–234. [CrossRef] [Google Scholar]
  • Schaef H.T., McGrail B.P., Owen A.T. (2010) Carbonate mineralization of volcanic province basalts, International Journal of Greenhouse Gas Control 4, 249–261. [Google Scholar]
  • Sverjensky D.A. (2003) Standard states for the activities of mineral surface sites and species, Geochimica et Cosmochimica Acta 67, 17–28. [CrossRef] [Google Scholar]
  • Tertre E., Beaucaire C., Juery A., Ly J. (2010) Methodology to obtain exchange properties of the calcite surface - Application to major and trace elements: Ca(II), HCO3-, and Zn(II), Journal of Colloid and Interface Science 347, 120–6. [CrossRef] [PubMed] [Google Scholar]
  • Tsakiroglou C.D., Payatakes A.C. (1990) A New Simulator of Mercury Porosimetry for the Characterization of Porous Materials, Journal of Colloid and Interface Science 137, 315–339. [Google Scholar]
  • van Brakel J. (1981) Mercury Porosimetry: State of the Art, Powder Technology 29, 1–12. [CrossRef] [Google Scholar]
  • Villegas-Jiménez A., Mucci A., Pokrovsky O.S., Schott J. (2009) Defining reactive sites on hydrated mineral surfaces: Rhombohedral carbonate minerals, Geochimica et Cosmochimica Acta 73, 4326–4345. [Google Scholar]
  • Viswanathan H., Dai Z., Lopano C., Keating E., Hakala J.A., Scheckel K.G., Zheng L., Guthrie G.D., Pawar R. (2012) Developing a robust geochemical and reactive transport model to evaluate possible sources of arsenic at the CO2 sequestration natural analog site in Chimayo, New Mexico, International Journal of Greenhouse Gas Control 10, 199–214. [CrossRef] [Google Scholar]
  • Washburn E.W. (1921) Note on a method of determining the distribution of pore sizes in a porous material, in, Proceedings of the National Academy of Sciences of the United States of America 7, 115–116. [CrossRef] [PubMed] [Google Scholar]
  • Wigand M., Carey J.W., Schutt H., Spangenberg E., Erzinger J. (2008) Geochemical effects of CO2 sequestration in sandstones under simulated in situ conditions of deep saline aquifers, Applied Geochemistry 23, 2735–2745. [CrossRef] [Google Scholar]
  • World Health Statistics 2011 World Health Organization. [Google Scholar]
  • Xu T., Apps J., Pruess K. (2004) Numerical simulation of CO2 disposal by mineral trapping in deep aquifers, Applied Geochemistry 19, 917–936. [CrossRef] [Google Scholar]
  • Xu T., Kharaka Y.K., Doughty C., Freifeld B.M., Dalye T.M. (2010) Reactive transport modeling to study changes in water chemistry induced by CO2 injection at the Frio-I Brine Pilot, Chemical Geology 271, 3–4, 153–164. [CrossRef] [Google Scholar]
  • Zachara J.M., Kittrick J.A., Harsh J.B. (1988) The mechanism of Zn2+ adsorption on calcite, Geochimica et Cosmochimica Acta 52, 2281–2291. [CrossRef] [Google Scholar]
  • Zachara J.M., Cowan C.E., Resch C.T. (1991) Sorption of divalent metals on calcite, Geochimica et Cosmochimica Acta 55, 1549–1562. [CrossRef] [Google Scholar]
  • Zheng L., Apps J.A., Zhang Y., Xu T., Birkholzer J.T. (2009) On mobilization of lead and arsenic in groundwater in response to CO2 leakage from deep geological storage, Chemical Geology 268, 281–297. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.