IFP Energies nouvelles International Conference: LES4ICE 2014 – Large-Eddy Simulation for Internal Combustion Engine Flows
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Number 1, January–February 2016
IFP Energies nouvelles International Conference: LES4ICE 2014 – Large-Eddy Simulation for Internal Combustion Engine Flows
Article Number 3
Number of page(s) 27
DOI https://doi.org/10.2516/ogst/2015028
Published online 22 January 2016
  • Merker G.P., Schwarz C. (2009) Grundlagen Verbrennungsmotoren, Springer. [Google Scholar]
  • Haworth D.C. (1999) Large-eddy simulation of in-cylinder flows, Oil & Gas Science and Technology 54, 2, 175–185. [CrossRef] [EDP Sciences] [Google Scholar]
  • Thobois L., Lauvergne R., Poinsot T. (2007) Using LES to investigate reacting flow physics in engine design process, SAE Paper 2007-01-0166. [Google Scholar]
  • Granet V., Vermorel O., Lacour C., Enaux B., Dugué V., Poinsot T. (2012) Large-Eddy Simulation and experimental study of cycle-to-cycle variations of stable and unstable operating points in a spark ignition engine, Combustion and Flame 159, 1562–1575. [CrossRef] [Google Scholar]
  • Pera C., Angelberger C. (2011) Large Eddy Simulation of a Motored Single-Cylinder Engine Using System Simulation to Define Boundary Conditions: Methodology and Validation, SAE Int. J. Engines 4, 1, 948–963. DOI: 10.4271/2011-01-0834. [CrossRef] [Google Scholar]
  • Goryntsev D., Sadiki A., Klein M., Janicka J. (2009) Large eddy simulation based analysis of the effects of cycle-to-cycle variations on air-fuel mixing in realistic DISI IC-engines, Proc. Comb. Inst. 32, 2, 2759–2766. [CrossRef] [Google Scholar]
  • Kuo T.-W., Yang X., Gopalakrishnan V., Chen Z. (2014) Large Eddy Simulation (LES) for IC Engine Flows, Oil & Gas Science and Technology 69, 1, 61–81. [CrossRef] [EDP Sciences] [Google Scholar]
  • Rutland C.J. (2011) Large-eddy simulations for internal combustion engines - a review, International Journal of Engine Research 12, 4, 421–451. [CrossRef] [EDP Sciences] [Google Scholar]
  • Yang X., Gupta S., Kuo T.-W., Gopalakrishnan V. (2013) RANS and LES of IC Engine Flows: A Comparative Study. ASME 2013 Internal Combustion Engine Division Fall Technical Conference, American Society of Mechanical Engineers. [Google Scholar]
  • Morse A.P., Whitelaw J.H., Yianneskis M. (1979) Turbulent Flow Measurements by Laser-Doppler Anemometry in a Motored Piston-Cylinder Assemblies, Journal of Fluids Engineering 101, 2, 208–216. [CrossRef] [Google Scholar]
  • Lacour C., Pera C. (2011) An experimental Database Dedicated to the Study and Modelling of Cyclic Variability in Spark-Ignition Engines with LES, SAE Technical Paper 2011-01-1282. [Google Scholar]
  • Baum E., Peterson B., Böhm B., Dreizler A. (2014) On the validation of LES applied to internal combustion engine flows: Part 1: comprehensive experimental database, Flow, Turbulence and Combustion 92, 1-2, 269–297. [CrossRef] [Google Scholar]
  • Sick V., Reuss D., Abraham P., Alhardi A., Almagri O., Chen H., Rutland C., Zhang Y., Haworth D., Liu K., Oefelein J., Janicka J., Goryntsev D., Kuo T.-W., Yang X., Gopalakrishnan V. (2010) A Common Engine Platform for Engine LES Development and Validation, LES4ICE 2010, IFP Energies Nouvelles, Rueil-Malmaison, France. [Google Scholar]
  • Reuss D.L. (2000) Cyclic Variability of Large-Scale Turbulent Structures in Directed and Undirected IC Engine Flows, SAE Technical Paper, 2000-01-0246. [Google Scholar]
  • Kuo T.-W., Reuss D.L. (1995) Multidimensional Port and Cylinder Flow Calculations for the Transparent-Combustion-Chamber Engine, Engine Modeling, ICE-Vol. 23, Uzkan T., ASME, pp. 19–30. [Google Scholar]
  • Reuss D.L., Bardsley M., Felton P.G., Landreth C.C., Adrian R.J. (1990) Velocity, Vorticity, and Strain-Rate Ahead of a Flame Measured in an Engine Using Particle Image Velocimetry, SAE Technical Paper 900053. [Google Scholar]
  • Reuss D.L., Adrian R.J., Landreth C.C., French D.T., Fansler T.D. (1989) Instantaneous Planar Measurements of Velocity and Large-Scale Vorticity and Strain Rate in an Engine Using Particle-Image Velocimetry, SAE Technical Paper 890616. [Google Scholar]
  • Abraham P., Liu K., Haworth D., Reuss D., Sick V. (2014) Evaluating Large-Eddy Simulation (LES) and High-Speed Particle Image Velocimetry (PIV) with Phase-Invariant Proper Orthogonal Decomposition (POD), Oil & Gas Science and Technology 69, 1, 41–59. [CrossRef] [EDP Sciences] [Google Scholar]
  • Abraham P.S., Yang X., Gupta S.,Kuo T.-W.,Reuss D.L.,Sick V. (2015) Flow-pattern switching in a motored spark ignition engine, International Journal of Engine Research 16, 3, 323–339. [CrossRef] [Google Scholar]
  • Abraham P., Reuss D., Sick V. (2013) High-speed particle image velocimetry study of in-cylinder flows with improved dynamic range, SAE Technical Paper 2013-01-0542. [Google Scholar]
  • Adrian R. (1997) Dynamic ranges of velocity and spatial resolution of particle image velocimetry, Measurement Science and Technology 8, 1393–1398. [CrossRef] [Google Scholar]
  • Reuss D.L., Megerle M., Sick V. (2002) Particle-image velocimetry Measurement Errors when Imaging through a Transparent Engine Cylinder, Measurement Science and Technology 13, 1029–1035. [CrossRef] [Google Scholar]
  • Megerle M., Sick V., Reuss D.L. (2002) Measurement of Digital PIV Precision using Electrooptically-Created Particle-Image Displacements, Measurement Science and Technology 13, 997–1005. [CrossRef] [Google Scholar]
  • Baker R., Hutchinson P., Whitelaw J. (1974) Velocity measurements in the recirculation region of an industrial burner flame by laser anemometry with light frequency shifting, Combustion and Flame 23, 1, 57–71. [CrossRef] [Google Scholar]
  • CONVERGETM (2009) CONVERGETM: A Three-Dimensional Computational Fluid Dynamics Program for Transient Flows with Complex Geometries, Convergent Science Inc. [Google Scholar]
  • Pomraning E. (2000) Development of large eddy simulation turbulence models, University of Wisconsin Madison. [Google Scholar]
  • Werner H., Wengle H. (1991) Large-eddy simulation of turbulent flow over and around a cube in a plate channel, Eighth Symposium on Turbulent Shear Flows, Munich, Germany, 9-11 Sept., Session 19-4. [Google Scholar]
  • Yoshizawa A., Horiuti K. (1985) A statistically-Derived Subgrid-Scale Kinetic Energy Model for the Large-Eddy Simulation of Turbulent Flows, Journal of the Physical Society of Japan 54, 8, 2834–2839. [CrossRef] [Google Scholar]
  • Menon S., Yeung P.-K., Kim W.-W. (1996) Effect of Subgrid Models on the Computed Interscale Energy Transfer in Isotropic Turbulence, Computers and Fluids 25, 2, 165–180. [CrossRef] [Google Scholar]
  • Pomraning E., Rutland C.J. (2002) A Dynamic One-Equation Non-Viscosity LES Model, AIAA Journal 40, 4, 689–701. [CrossRef] [Google Scholar]
  • Ghosal S., Lund T.S., Moin P., Akselvoll K. (1995) A dynamic localization model for large-eddy simulation of turbulent flows, J. Fluid Mech. 286, 229–255. [NASA ADS] [CrossRef] [Google Scholar]
  • Germano M., Piomelli U., Moin P., Cabot W.H. (1991) A dynamic subgrid-scale eddy viscosity model, Physics of Fluids A: Fluid Dynamics (1989-1993) 3, 7, 1760–1765. [NASA ADS] [CrossRef] [Google Scholar]
  • Werner H., Wengle H. (1993) Large-Eddy Simulation of Turbulent Flow Over and Around a Cube in a Plate Channel, Turbulent Shear Flows 8, 155–168. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.