Dossier: Fluids-Polymers Interactions: Permeability, Durability
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Number 2, March–April 2015
Dossier: Fluids-Polymers Interactions: Permeability, Durability
Page(s) 267 - 277
DOI https://doi.org/10.2516/ogst/2013196
Published online 20 March 2014
  • Fukushima Y., Inagaki S. (1987) Synthesis of an intercalated compound of montmorillonite and 6-polyamide, Journal of Inclusion Phenomena 5, 473–482. [CrossRef] [Google Scholar]
  • Fukushima Y., Okada A., Kawasumi M., Kurauchi T., Kamigaito O. (1988) Swelling behaviour of montmorillonite by poly-6-amide, Clay Minerals 23, 27–34. [CrossRef] [Google Scholar]
  • Kojima Y., Usuki A., Kawasumi M., Okada A., Fukushima Y. (1993) Mechanical properties of nylon 6-clay hybrid, J. Mater. Res. 8, 5, 1185–1189. [CrossRef] [Google Scholar]
  • Kojima Y., Usuki A., Kawasumi M., Okada A., Kurauchi T., Kamigaito O. (1993) Sorption of water in nylon6-clay hybrid, J. Applied Polymer Sci. 49, 11, 1259–1264. [CrossRef] [Google Scholar]
  • Okada A., Kawasumi M., Kurauchi T., Kamigaito O. (1987) Synthesis and characterization of Nylon 6-Clay Hybrid, Polym. Prepr. 28, 447–448. [Google Scholar]
  • Okada A., Kawasumi M., Usuki A., Kojima Y., Kurauchi T., Kamigaito O. (1990) Nylon 6-Clay Hybrid, Mat. Res. Soc. Symp. Proc. 171, 45–50. [CrossRef] [Google Scholar]
  • Usuki A., Kawasumi M., Kojima Y., Okada A., Kurauchi T., Kamigaito O. (1993) Swelling behavior of montmorillonite cation exchanged for ω-amino acids by ε-caprolactam, J. Mater. Res. 8, 5, 1174–1178. [CrossRef] [Google Scholar]
  • Usuki A., Kojima Y., Kawasumi M., Okada A., Fukushima Y., Kurauchi T., Kamigaito O. (1993) Synthesis of nylon 6-clay hybrid, J. Mater. Res. 8, 5, 1179–1184. [CrossRef] [Google Scholar]
  • Yano K., Usuki A., Okada A., Kurauchi T., Kamigaito O. (1991) Synthesis and properties of polyimide-clay hybrid, Polym. Prepr. 32, 65–66. [Google Scholar]
  • Lan T., Kaviratna P.D., Pinnavaia T.J. (1995) Mechanism of clay tactoid exfoliation in epoxy-clay nanocomposites, Chem. Mater. 7, 2144–2150. [CrossRef] [Google Scholar]
  • Lan T., Kaviratna P.D., Pinnavaia T.J. (1994) On the nature of polyimide-clay hybrid composites, Chem. Mater. 6, 5, 573–575. [CrossRef] [Google Scholar]
  • Pinnavaia T.J., Beall G.W. (2000) Polymer-Clay Nanocomposites, John Wiley & Sons, Chichester, UK. [Google Scholar]
  • Vaia R.A., Ishii H., Giannelis E.P. (1993) Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates, Chem. Mater. 5, 1694–1696. [CrossRef] [Google Scholar]
  • Vaia R.A., Jandt K.D., Kramer E.J., Giannelis E.P. (1995) Kinetics of polymer melt intercalation, Macromolecules 28, 24, 8080–8085. [CrossRef] [Google Scholar]
  • Giannelis E.P. (1996) Polymer Layered Silicate Nanocomposites, Adv. Mater. 8, 1, 29–35. [CrossRef] [Google Scholar]
  • Artzi N., Nir Y., Narkis M., Siegmann A. (2002) Melt blending of ethylene-vinyl alcohol copolymer/clay nanocomposites: Effect of the clay type and processing conditions, Journal of Polymer Science Part B: Polymer Physics 40, 16, 1741–1753. [CrossRef] [Google Scholar]
  • Lee K.M., Han C.D. (2003) Rheology of organoclay nanocomposites: effects of polymer matrix/organoclay and the gallery distance of organoclay, Macromolecules 36, 19, 7165–7178. [CrossRef] [Google Scholar]
  • Pozsgay A., Fráter T., Százdi L., Müller P., Sajó I., Pukánszky B. (2004) Gallery structure and exfoliation of organophilized montmorillonite: effect on composite properties, European Polymer Journal 40, 1, 27–36. [CrossRef] [Google Scholar]
  • Shi H., Lan T., Pinnavaia T.J. (1996) Interfacial Effects on the Reinforcement Properties of Polymer−Organoclay Nanocomposites, Chemistry of Materials 8, 8, 1584–1587. [CrossRef] [Google Scholar]
  • Su S., Jiang D.D., Wilkie C.A. (2004) Poly(methyl methacrylate), polypropylene and polyethylene nanocomposite formation by melt blending using novel polymerically-modified clays, Polymer Degradation and Stability 83, 2, 321–331. [CrossRef] [Google Scholar]
  • Suh D.J., Park O.O. (2002) Nanocomposite structure depending on the degree of surface treatment of layered silicate, J. Applied Polymer Sci. 83, 2143–2147. [CrossRef] [Google Scholar]
  • Usuki A., Kato M., Okada A., Kurauchi T. (1997) Synthesis of polypropylene-clay hybrid, J. Applied Polymer Sci. 63, 137–139. [CrossRef] [Google Scholar]
  • Vaia R.A., Giannelis E.P. (1997) Lattice model of polymer melt intercalation in organically-modified layered silicates, Macromolecules 30, 7990–7999. [CrossRef] [Google Scholar]
  • Vaia R.A., Giannelis E.P. (1997) Polymer melt intercalation in organically-modified layered silicates: model predictions and experiment, Macromolecules 30, 24, 8000–8009. [CrossRef] [Google Scholar]
  • Wanjale S.D., Jog J.P. (2004) Poly(4-methyl-1-pentene)/clay nanocomposites: Effect of organically modified layered silicates, Polymer International 53, 1, 101–105. [CrossRef] [Google Scholar]
  • Zhang W., Chen D., Zhao Q., Fang Y. (2003) Effects of different kinds of clay and different vinyl acetate content on the morphology and properties of EVA/clay nanocomposites, Polymer 44, 26, 7953–7961. [CrossRef] [Google Scholar]
  • Zhang Y.H., Gong K.C. (1998) Effect of quaternary ammonium-modified montmorillonites on mechanical properties of polypropylene, Mat. Res. Soc. Symp. Proc. 520, 191–195. [CrossRef] [Google Scholar]
  • Phua S.L., Yang L., Toh C.L., Huang S., Tsakadze Z., Lau S.K., Mai Y.-W., Lu X. (2012) Reinforcement of Polyether Polyurethane with Dopamine-Modified Clay: The Role of Interfacial Hydrogen Bonding, ACS Applied Materials & Interfaces 4, 9, 4571–4578. [CrossRef] [PubMed] [Google Scholar]
  • Unnikrishnan L., Mohanty S., Nayak S.K., Ali A. (2011) Preparation and characterization of poly(methyl methacrylate)–clay nanocomposites via melt intercalation: Effect of organoclay on thermal, mechanical and flammability properties, Materials Science and Engineering: A 528, 12, 3943–3951. [CrossRef] [Google Scholar]
  • Kato M., Usuki A., Okada A. (1997) Synthesis of polypropylene oligomer—clay intercalation compounds, Journal of Applied Polymer Science 66, 9, 1781–1785. [CrossRef] [Google Scholar]
  • Kawasumi M., Hasegawa N., Kato M., Usuki A., Okada A. (1997) Preparation and Mechanical Properties of Polypropylene−Clay Hybrids, Macromolecules 30, 20, 6333–6338. [CrossRef] [Google Scholar]
  • Durmuş A., Woo M., Kaşgöz A., Macosko C.W., Tsapatsis M. (2007) Intercalated linear low density polyethylene (LLDPE)/clay nanocomposites prepared with oxidized polyethylene as a new type compatibilizer: Structural, mechanical and barrier properties, European Polymer Journal 43, 9, 3737–3749. [CrossRef] [Google Scholar]
  • Garcia-Lopez D., Picazo O., Merino J.C., Pastor J.M. (2003) Polypropylene-clay nanocomposites: effect of compatibilizing agents on clay dispersion, European Polymer Journal 39, 5, 945–950. [CrossRef] [Google Scholar]
  • Gopakumar T.G., Lee J.A., Kontopoulou M., Parent J.S. (2002) Influence of clay exfoliation on the physical properties of montmorillonite/polyethylene composites, Polymer 43, 20, 5483–5491. [CrossRef] [Google Scholar]
  • Ishida H., Campbell S., Blackwell J. (2000) General approach to nanocomposite preparation, Chem. Mater. 12, 1260–1267. [CrossRef] [Google Scholar]
  • Koo C.M., Ham H.T., Kim S.O., Wang K.H., Chung I.J. (2002) Morphology evolution and anisotropic phase formation of the maleated polyethylene-layered silicates nanocomposites, Macromolecules 35, 13, 5116–5122. [CrossRef] [Google Scholar]
  • Liang G., Xu J., Bao S., Xu W. (2004) Polyethylene/maleic anhydride grafted polyethylene/organic-montmorillonite nanocomposites. I. Preparation, microstructure, and mechanical properties, J. Applied Polymer Sci. 91, 6, 3974–3980. [CrossRef] [Google Scholar]
  • Liang G., Xu J., Xu W. (2004) PE/PE-g-MAH/Org-mmt nanocomposites. II. Nonisothermal crystallisation kinetics, J. Applied Polymer Sci. 91, 5, 3054–3059. [CrossRef] [Google Scholar]
  • Sharif-Pakdaman A., Morshedian J., Jahani Y. (2013) Effect of organoclay and silane grafting of polyethylene on morphology, barrierity, and rheological properties of HDPE/PA6 blends, Journal of Applied Polymer Science 127, 2, 1211–1220. [CrossRef] [Google Scholar]
  • Varela C., Rosales C., Perera R., Matos M., Poirier T., Blunda J. (2002) Use of functionalized polypropylenes in the compatibilization and dispersion of nanocomposites, Nanocomposites 2002, San Diego, US, 23-25 Sept. [Google Scholar]
  • Wang Z.M., Nakajima H., Manias E., Chung T.C. (2003) Exfoliated PP/Clay nanocomposites using ammonium-terminated PP as the organic modification for montmorillonite, Macromolecules 36, 24, 8919–8922. [CrossRef] [Google Scholar]
  • Bagheri-Kazemabad S., Fox D., Chen Y., Geever L.M., Khavandi A., Bagheri R., Higginbotham C.L., Zhang H., Chen B. (2012) Morphology, rheology and mechanical properties of polypropylene/ethylene–octene copolymer/clay nanocomposites: Effects of the compatibilizer, Composites Science and Technology 72, 14, 1697–1704. [CrossRef] [Google Scholar]
  • Uribe-Calderon J., Kamal M.R. (2010) Evaluation of various Surfactants and Compatibilizers for Preparation of PS/Clay Nanocomposites by Melt Compounding, Journal of Polymer Engineering 30, 5-7, 377–412. [CrossRef] [Google Scholar]
  • Pack S., Kashiwagi T., Cao C., Korach C.S., Lewin M., Rafailovich M.H. (2010) Role of Surface Interactions in the Synergizing Polymer/Clay Flame Retardant Properties, Macromolecules 43, 12, 5338–5351. [CrossRef] [Google Scholar]
  • Dal Castel C., Pelegrini Jr T., Barbosa R.V., Liberman S.A., Mauler R.S. (2010) Properties of silane grafted polypropylene/montmorillonite nanocomposites, Composites Part A: Applied Science and Manufacturing 41, 2, 185–191. [CrossRef] [Google Scholar]
  • Mainil M., Alexandre M., Monteverde F., Dubois P. (2006) Polyethylene Organo-Clay Nanocomposites: The Role of the Interface Chemistry on the Extent of Clay Intercalation/Exfoliation, Journal of Nanoscience and Nanotechnology 6, 2, 337–344. [PubMed] [Google Scholar]
  • Lee S.-S., Hur M.H., Yang H., Lim S., Kim J. (2006) Effect of interfacial attraction on intercalation in polymer/clay nanocomposites, Journal of Applied Polymer Science 101, 5, 2749–2753. [CrossRef] [Google Scholar]
  • Lyatskaya Y., Balazs A.C. (1998) Modeling the Phase Behavior of Polymer−Clay Composites, Macromolecules 31, 19, 6676–6680. [CrossRef] [Google Scholar]
  • Balazs A.C., Singh C., Zhulina E. (1998) Modeling the Interactions between Polymers and Clay Surfaces through Self-Consistent Field Theory, Macromolecules 31, 23, 8370–8381. [CrossRef] [Google Scholar]
  • Zhulina E., Singh C., Balazs A.C. (1999) Attraction between Surfaces in a Polymer Melt Containing Telechelic Chains: Guidelines for Controlling the Surface Separation in Intercalated Polymer−Clay Composites, Langmuir 15, 11, 3935–3943. [CrossRef] [Google Scholar]
  • Lee S.-S., Kim J. (2004) Surface modification of clay and its effect on the intercalation behavior of the polymer/clay nanocomposites, Journal of Polymer Science Part B: Polymer Physics 42, 12, 2367–2372. [CrossRef] [Google Scholar]
  • Flaconneche B., Martin J., Klopffer M.-H. (2001) Permeability, Diffusion and Solubility of Gases in Polyethylene, Polyamide 11 and Poly (Vinylidene Fluoride), Oil & Gas Science and Technology – Rev. IFP 56, 3, 261–278. [CrossRef] [EDP Sciences] [OGST] [Google Scholar]
  • Klopffer M.-H., Flaconneche B. (2001) Transport Properdines of Gases in Polymers: Bibliographic Review, Oil & Gas Science and Technology – Rev. IFP 56, 3, 223–244. [CrossRef] [EDP Sciences] [OGST] [Google Scholar]
  • Stannett V. (1978) The transport of gases in synthetic polymeric membranes — an historic perspective, Journal of Membrane Science 3, 2, 97–115. [CrossRef] [Google Scholar]
  • Crank J. (1975) The Mathematics of Diffusion, 2nd ed., Oxford. [Google Scholar]
  • Crank J., Park G.S. (1968) Diffusion in polymers, Academic Press, London, New York, N.Y. [Google Scholar]
  • Naylor T.V. (1989) Permeation Properties, in Comprehensive Polymer Science, Booth C. and Price C. (eds), Pergamon Press, Oxford, pp. 643–668. [CrossRef] [Google Scholar]
  • Koros W.J., Hellums M.W. (1985) Transport Properties, in Encyclopedia of Polymer Science and Technology, John Wiley & Sons, pp. 725–802. [Google Scholar]
  • Neogi P. (1996) Transport Phenomena in Polymer Membranes, in Diffusion in Polymers, Marcel Dekker Inc., New York, pp. 173–210. [Google Scholar]
  • Rogers C.E. (1964) Permeability and Chemical Resistance, in Engineering design for plastics, Baer E. (ed.), Reinhold, New York, pp. 609–688. [Google Scholar]
  • Rogers C.E. (1985) Permeation of gases and vapours in polymers, in Polymer permeability, Comyn J. (ed.), Elsevier Applied Science, pp. 11–73. [CrossRef] [Google Scholar]
  • Alexander Stern S. (1994) Polymers for gas separations: the next decade, Journal of Membrane Science 94, 1, 1–65. [CrossRef] [Google Scholar]
  • Michaels A.S., Bixler H.J. (1961) Flow of gases through polyethylene, Journal of Polymer Science 50, 413–439. [CrossRef] [Google Scholar]
  • Michaels A.S., Bixler H.J. (1961) Solubility of gases in polyethylene, Journal of Polymer Science 50, 154, 393–412. [CrossRef] [Google Scholar]
  • Michaels A.S., Parker R.B. (1959) Sorption and flow of gases in polyethylene, Journal of Polymer Science 41, 138, 53–71. [CrossRef] [Google Scholar]
  • Nielsen L.E. (1967) Models for the permeability of filled polymer systems, J. Macromol. Sci. 5, A1, 929–942. [CrossRef] [Google Scholar]
  • Lape N.K., Nuxoll E.E., Cussler E.L. (2004) Polydisperse flakes in barrier films, Journal of Membrane Science 236, 1-2, 29–37. [CrossRef] [Google Scholar]
  • Waché R. (2004) Formulation et caractérisation de polyéthylènes chargés avec des argiles. Propriétés barrière des nanocomposites obtenus, Thèse, Université de Bretagne Occidentale, Brest. [Google Scholar]
  • Choudalakis G., Gotsis A.D. (2009) Permeability of polymer/clay nanocomposites: A review, European Polymer Journal 45, 4, 967–984. [CrossRef] [Google Scholar]
  • Bharadwaj R.K. (2001) Modeling the barrier properties of polymer-layered silicates nanocomposites, Macromol. 34, 9189–9192. [CrossRef] [Google Scholar]
  • Cussler E.L., Hughes S.E., Ward W.J., Aris R. (1988) Barrier membranes, Journal of Membrane Science 38, 161–174. [CrossRef] [Google Scholar]
  • Adame D., Beall G.W. (2009) Direct measurement of the constrained polymer region in polyamide/clay nanocomposites and the implications for gas diffusion, Applied Clay Science 42, 3-4, 545–552. [CrossRef] [Google Scholar]
  • Lu C., Mai Y.-W. (2007) Permeability modelling of polymer-layered silicate nanocomposites, Composites Science and Technology 67, 14, 2895–2902. [CrossRef] [Google Scholar]
  • Gusev A.A., Lusti H.R. (2001) Rational design of nanocomposites for barrier applications, Adv. Mater. 13, 21, 1641–1643. [CrossRef] [Google Scholar]
  • Fredrickson G.H., Bicerano J. (1999) Barrier properties of oriented disk composites, Journal of Chemical Physics 110, 4, 2181–2188. [CrossRef] [Google Scholar]
  • Picard E., Vermogen A., Gérard J.F., Espuche E. (2007) Barrier properties of nylon 6-montmorillonite nanocomposite membranes prepared by melt blending: Influence of the clay content and dispersion state: Consequences on modelling, Journal of Membrane Science 292, 1-2, 133–144. [CrossRef] [Google Scholar]
  • Messersmith P.B., Giannelis E.P. (1995) Synthesis and barrier properties of poly(e-caprolactone)-layered silicate nanocomposites, J. Polym. Sci., Part A 33, 1047–1057. [CrossRef] [Google Scholar]
  • Yano K., Usuki A., Okada A. (1997) Synthesis and properties of polyimide-clay hybrid films, J. Polym. Sci., Part A 35, 2289–2294. [CrossRef] [Google Scholar]
  • Gorrasi G., Tammaro L., Tortora M., Vittoria V., Kaempfer D., Reichert P., Mülhaupt R. (2003) Transport properties of organic vapors in nanocomposites of isotactic polypropylene, J. Polym. Sci., Part B 41, 15, 1798–1805. [CrossRef] [Google Scholar]
  • Gorrasi G., Tortora M., Vittoria V., Kaempfer D., Mülhaupt R. (2003) Transport properties of organic vapors in nanocomposites of organophilic layered silicate and syndiotactic polypropylene, Polymer 44, 3679–3685. [CrossRef] [Google Scholar]
  • Gorrasi G., Tortora M., Vittoria V., Pollet E., Lepoittevin B., Alexandre M., Dubois P. (2003) Vapor properties of polycaprolactone montmorillonite nanocomposites: Effect of clay dispersion, Polymer 44, 8, 2271–2279. [CrossRef] [Google Scholar]
  • Tortora M., Gorrasi G., Vittoria V., Galli G., Ritrovati S., Chiellini E. (2002) Structural characterization and transport properties of organically modified montmorillonite/polyurethane nanocomposites, Polymer 43, 6147–6157. [CrossRef] [Google Scholar]
  • Klopffer M.-H., Waché R., Flaconnèche B., Vinciguerra E., Gonzalez S. (2002) Polymer clay nanocomposites for the enhancement of barrier properties to organic fluids, Nanocomposites 2002, San Diego, US, 23-25 Sept. [Google Scholar]
  • Pereira de Abreu D.A., Paseiro Losada P., Angulo I., Cruz J.M. (2007) Development of new polyolefin films with nanoclays for application in food packaging, European Polymer Journal, 43, 6, 2229–2243. [CrossRef] [Google Scholar]
  • Arunvisut S., Phummanee S., Somwangthanaroj A. (2007) Effect of clay on mechanical and gas barrier properties of blown film LDPE/clay nanocomposites, Journal of Applied Polymer Science 106, 4, 2210–2217. [CrossRef] [Google Scholar]
  • Swain S.K., Isayev A.I. (2007) Effect of ultrasound on HDPE/clay nanocomposites: Rheology, structure and properties, Polymer 48, 1, 281–289. [CrossRef] [Google Scholar]
  • DeRocher J.P., Gettelfinger B.T., Wang J., Nuxoll E.E., Cussler E.L. (2005) Barrier membranes with different sizes of aligned flakes, Journal of Membrane Science 254, 1-2, 21–30. [CrossRef] [Google Scholar]
  • Hong S.-I., Rhim J.-W. (2012) Preparation and properties of melt-intercalated linear low density polyethylene/clay nanocomposite films prepared by blow extrusion, LWT - Food Science and Technology 48, 1, 43–51. [CrossRef] [Google Scholar]
  • Song P.a., Yu Y., Zhang T., Fu S., Fang Z., Wu Q. (2012) Permeability, Viscoelasticity, and Flammability Performances and Their Relationship to Polymer Nanocomposites, Industrial & Engineering Chemistry Research 51, 21, 7255–7263. [CrossRef] [Google Scholar]
  • Picard E., Gauthier H., Gérard J.F., Espuche E. (2007) Influence of the intercalated cations on the surface energy of montmorillonites: Consequences for the morphology and gas barrier properties of polyethylene/montmorillonites nanocomposites, Journal of Colloid and Interface Science 307, 2, 364–376. [CrossRef] [PubMed] [Google Scholar]
  • Alexandre B., Colasse L., Langevin D., Mederic P., Aubry T., Chappey C., Marais S. (2010) Transport mechanisms of small molecules through polyamide 12/montmorillonite nanocomposites, J. Phys. Chem. B 114, 27, 8827–37. [CrossRef] [PubMed] [Google Scholar]
  • Mittal V. (2013) Modeling and prediction of tensile modulus and oxygen permeation properties of polyethylene – layered silicate nanocomposites: Factorial and mixture designs, Journal of Reinforced Plastics and Composites 32, 4, 258–272. [CrossRef] [Google Scholar]
  • Gain O., Espuche E., Pollet E., Alexandre M., Dubois P. (2005) Gas barrier properties of poly(ε-caprolactone)/clay nanocomposites: Influence of the morphology and polymer/clay interactions, Journal of Polymer Science Part B: Polymer Physics 43, 2, 205–214. [CrossRef] [Google Scholar]
  • Carrera M.C., Erdmann E., Destéfanis H.A. (2013) Barrier Properties and Structural Study of Nanocomposite of HDPE/Montmorillonite Modified with Polyvinylalcohol, Journal of Chemistry 2013, 7. [CrossRef] [Google Scholar]
  • Monsiváis-Barrón A.J., Bonilla-Rios J., Ramos de Valle L.F., Palacios E. (2013) Oxygen permeation properties of HDPE-layered silicate nanocomposites, Polymer Bulletin 70, 3, 939–951. [CrossRef] [Google Scholar]
  • Stannett V., Yasuda H. (1965) The Measurement of Gas and Vapor Permeation and Diffusion in Polymers, in Testing of polymers, Comyn J. (ed.), Interscience Publishers, pp.393–418. [Google Scholar]
  • Flaconnèche B., Klopffer M.-H., Martin J., Taravel-Condat C. (2001) High pressure permeation of gases in semicrystalline polymers: measurement method and experimental data, 3rd MERL Conference on Oilfield Engineering with Polymers, London, 28-29 Nov. [Google Scholar]
  • Brown R.P. (1981) Permeability, in Handbook of Plastics Tests Methods, Comyn J. (ed.), G. Godwin Limited, pp. 378–394. [Google Scholar]
  • Waché R., Klopffer M.-H., Vinciguerra E., Gonzalez S., Moan M. (2002) Formulation et caractérisation de nanocomposites à matrice polyéthylène, Matériaux 2002, Tours, France, 21-25 Oct. [Google Scholar]
  • Waché R., Klopffer M.-H., Gonzalez S., Médéric P., Moan M. (2003) Maleated polyethylene nanocomposites: influence of clay content on barrier and melt rheological properties, Eurofillers 2003, Alicante, Spain, 8-11 Sept. [Google Scholar]
  • Manninen A.R., Naguib H.E., Nawaby A.V., Day M. (2005) CO2 sorption and diffusion in polymethyl methacrylate–clay nanocomposites, Polymer Engineering & Science 45, 7, 904–914. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.