- Fukushima Y., Inagaki S. (1987) Synthesis of an intercalated compound of montmorillonite and 6-polyamide, Journal of Inclusion Phenomena 5, 473–482. [CrossRef] [Google Scholar]
- Fukushima Y., Okada A., Kawasumi M., Kurauchi T., Kamigaito O. (1988) Swelling behaviour of montmorillonite by poly-6-amide, Clay Minerals 23, 27–34. [CrossRef] [Google Scholar]
- Kojima Y., Usuki A., Kawasumi M., Okada A., Fukushima Y. (1993) Mechanical properties of nylon 6-clay hybrid, J. Mater. Res. 8, 5, 1185–1189. [Google Scholar]
- Kojima Y., Usuki A., Kawasumi M., Okada A., Kurauchi T., Kamigaito O. (1993) Sorption of water in nylon6-clay hybrid, J. Applied Polymer Sci. 49, 11, 1259–1264. [CrossRef] [Google Scholar]
- Okada A., Kawasumi M., Kurauchi T., Kamigaito O. (1987) Synthesis and characterization of Nylon 6-Clay Hybrid, Polym. Prepr. 28, 447–448. [Google Scholar]
- Okada A., Kawasumi M., Usuki A., Kojima Y., Kurauchi T., Kamigaito O. (1990) Nylon 6-Clay Hybrid, Mat. Res. Soc. Symp. Proc. 171, 45–50. [CrossRef] [Google Scholar]
- Usuki A., Kawasumi M., Kojima Y., Okada A., Kurauchi T., Kamigaito O. (1993) Swelling behavior of montmorillonite cation exchanged for ω-amino acids by ε-caprolactam, J. Mater. Res. 8, 5, 1174–1178. [CrossRef] [Google Scholar]
- Usuki A., Kojima Y., Kawasumi M., Okada A., Fukushima Y., Kurauchi T., Kamigaito O. (1993) Synthesis of nylon 6-clay hybrid, J. Mater. Res. 8, 5, 1179–1184. [CrossRef] [Google Scholar]
- Yano K., Usuki A., Okada A., Kurauchi T., Kamigaito O. (1991) Synthesis and properties of polyimide-clay hybrid, Polym. Prepr. 32, 65–66. [Google Scholar]
- Lan T., Kaviratna P.D., Pinnavaia T.J. (1995) Mechanism of clay tactoid exfoliation in epoxy-clay nanocomposites, Chem. Mater. 7, 2144–2150. [CrossRef] [Google Scholar]
- Lan T., Kaviratna P.D., Pinnavaia T.J. (1994) On the nature of polyimide-clay hybrid composites, Chem. Mater. 6, 5, 573–575. [CrossRef] [Google Scholar]
- Pinnavaia T.J., Beall G.W. (2000) Polymer-Clay Nanocomposites, John Wiley & Sons, Chichester, UK. [Google Scholar]
- Vaia R.A., Ishii H., Giannelis E.P. (1993) Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates, Chem. Mater. 5, 1694–1696. [CrossRef] [Google Scholar]
- Vaia R.A., Jandt K.D., Kramer E.J., Giannelis E.P. (1995) Kinetics of polymer melt intercalation, Macromolecules 28, 24, 8080–8085. [CrossRef] [Google Scholar]
- Giannelis E.P. (1996) Polymer Layered Silicate Nanocomposites, Adv. Mater. 8, 1, 29–35. [CrossRef] [Google Scholar]
- Artzi N., Nir Y., Narkis M., Siegmann A. (2002) Melt blending of ethylene-vinyl alcohol copolymer/clay nanocomposites: Effect of the clay type and processing conditions, Journal of Polymer Science Part B: Polymer Physics 40, 16, 1741–1753. [CrossRef] [Google Scholar]
- Lee K.M., Han C.D. (2003) Rheology of organoclay nanocomposites: effects of polymer matrix/organoclay and the gallery distance of organoclay, Macromolecules 36, 19, 7165–7178. [CrossRef] [Google Scholar]
- Pozsgay A., Fráter T., Százdi L., Müller P., Sajó I., Pukánszky B. (2004) Gallery structure and exfoliation of organophilized montmorillonite: effect on composite properties, European Polymer Journal 40, 1, 27–36. [CrossRef] [Google Scholar]
- Shi H., Lan T., Pinnavaia T.J. (1996) Interfacial Effects on the Reinforcement Properties of Polymer−Organoclay Nanocomposites, Chemistry of Materials 8, 8, 1584–1587. [CrossRef] [Google Scholar]
- Su S., Jiang D.D., Wilkie C.A. (2004) Poly(methyl methacrylate), polypropylene and polyethylene nanocomposite formation by melt blending using novel polymerically-modified clays, Polymer Degradation and Stability 83, 2, 321–331. [CrossRef] [Google Scholar]
- Suh D.J., Park O.O. (2002) Nanocomposite structure depending on the degree of surface treatment of layered silicate, J. Applied Polymer Sci. 83, 2143–2147. [CrossRef] [Google Scholar]
- Usuki A., Kato M., Okada A., Kurauchi T. (1997) Synthesis of polypropylene-clay hybrid, J. Applied Polymer Sci. 63, 137–139. [CrossRef] [Google Scholar]
- Vaia R.A., Giannelis E.P. (1997) Lattice model of polymer melt intercalation in organically-modified layered silicates, Macromolecules 30, 7990–7999. [CrossRef] [Google Scholar]
- Vaia R.A., Giannelis E.P. (1997) Polymer melt intercalation in organically-modified layered silicates: model predictions and experiment, Macromolecules 30, 24, 8000–8009. [CrossRef] [Google Scholar]
- Wanjale S.D., Jog J.P. (2004) Poly(4-methyl-1-pentene)/clay nanocomposites: Effect of organically modified layered silicates, Polymer International 53, 1, 101–105. [CrossRef] [Google Scholar]
- Zhang W., Chen D., Zhao Q., Fang Y. (2003) Effects of different kinds of clay and different vinyl acetate content on the morphology and properties of EVA/clay nanocomposites, Polymer 44, 26, 7953–7961. [CrossRef] [Google Scholar]
- Zhang Y.H., Gong K.C. (1998) Effect of quaternary ammonium-modified montmorillonites on mechanical properties of polypropylene, Mat. Res. Soc. Symp. Proc. 520, 191–195. [CrossRef] [Google Scholar]
- Phua S.L., Yang L., Toh C.L., Huang S., Tsakadze Z., Lau S.K., Mai Y.-W., Lu X. (2012) Reinforcement of Polyether Polyurethane with Dopamine-Modified Clay: The Role of Interfacial Hydrogen Bonding, ACS Applied Materials & Interfaces 4, 9, 4571–4578. [CrossRef] [PubMed] [Google Scholar]
- Unnikrishnan L., Mohanty S., Nayak S.K., Ali A. (2011) Preparation and characterization of poly(methyl methacrylate)–clay nanocomposites via melt intercalation: Effect of organoclay on thermal, mechanical and flammability properties, Materials Science and Engineering: A 528, 12, 3943–3951. [CrossRef] [Google Scholar]
- Kato M., Usuki A., Okada A. (1997) Synthesis of polypropylene oligomer—clay intercalation compounds, Journal of Applied Polymer Science 66, 9, 1781–1785. [Google Scholar]
- Kawasumi M., Hasegawa N., Kato M., Usuki A., Okada A. (1997) Preparation and Mechanical Properties of Polypropylene−Clay Hybrids, Macromolecules 30, 20, 6333–6338. [CrossRef] [Google Scholar]
- Durmuş A., Woo M., Kaşgöz A., Macosko C.W., Tsapatsis M. (2007) Intercalated linear low density polyethylene (LLDPE)/clay nanocomposites prepared with oxidized polyethylene as a new type compatibilizer: Structural, mechanical and barrier properties, European Polymer Journal 43, 9, 3737–3749. [Google Scholar]
- Garcia-Lopez D., Picazo O., Merino J.C., Pastor J.M. (2003) Polypropylene-clay nanocomposites: effect of compatibilizing agents on clay dispersion, European Polymer Journal 39, 5, 945–950. [CrossRef] [Google Scholar]
- Gopakumar T.G., Lee J.A., Kontopoulou M., Parent J.S. (2002) Influence of clay exfoliation on the physical properties of montmorillonite/polyethylene composites, Polymer 43, 20, 5483–5491. [CrossRef] [Google Scholar]
- Ishida H., Campbell S., Blackwell J. (2000) General approach to nanocomposite preparation, Chem. Mater. 12, 1260–1267. [CrossRef] [Google Scholar]
- Koo C.M., Ham H.T., Kim S.O., Wang K.H., Chung I.J. (2002) Morphology evolution and anisotropic phase formation of the maleated polyethylene-layered silicates nanocomposites, Macromolecules 35, 13, 5116–5122. [CrossRef] [Google Scholar]
- Liang G., Xu J., Bao S., Xu W. (2004) Polyethylene/maleic anhydride grafted polyethylene/organic-montmorillonite nanocomposites. I. Preparation, microstructure, and mechanical properties, J. Applied Polymer Sci. 91, 6, 3974–3980. [CrossRef] [Google Scholar]
- Liang G., Xu J., Xu W. (2004) PE/PE-g-MAH/Org-mmt nanocomposites. II. Nonisothermal crystallisation kinetics, J. Applied Polymer Sci. 91, 5, 3054–3059. [CrossRef] [Google Scholar]
- Sharif-Pakdaman A., Morshedian J., Jahani Y. (2013) Effect of organoclay and silane grafting of polyethylene on morphology, barrierity, and rheological properties of HDPE/PA6 blends, Journal of Applied Polymer Science 127, 2, 1211–1220. [CrossRef] [Google Scholar]
- Varela C., Rosales C., Perera R., Matos M., Poirier T., Blunda J. (2002) Use of functionalized polypropylenes in the compatibilization and dispersion of nanocomposites, Nanocomposites 2002, San Diego, US, 23-25 Sept. [Google Scholar]
- Wang Z.M., Nakajima H., Manias E., Chung T.C. (2003) Exfoliated PP/Clay nanocomposites using ammonium-terminated PP as the organic modification for montmorillonite, Macromolecules 36, 24, 8919–8922. [CrossRef] [Google Scholar]
- Bagheri-Kazemabad S., Fox D., Chen Y., Geever L.M., Khavandi A., Bagheri R., Higginbotham C.L., Zhang H., Chen B. (2012) Morphology, rheology and mechanical properties of polypropylene/ethylene–octene copolymer/clay nanocomposites: Effects of the compatibilizer, Composites Science and Technology 72, 14, 1697–1704. [CrossRef] [Google Scholar]
- Uribe-Calderon J., Kamal M.R. (2010) Evaluation of various Surfactants and Compatibilizers for Preparation of PS/Clay Nanocomposites by Melt Compounding, Journal of Polymer Engineering 30, 5-7, 377–412. [CrossRef] [Google Scholar]
- Pack S., Kashiwagi T., Cao C., Korach C.S., Lewin M., Rafailovich M.H. (2010) Role of Surface Interactions in the Synergizing Polymer/Clay Flame Retardant Properties, Macromolecules 43, 12, 5338–5351. [CrossRef] [Google Scholar]
- Dal Castel C., Pelegrini Jr T., Barbosa R.V., Liberman S.A., Mauler R.S. (2010) Properties of silane grafted polypropylene/montmorillonite nanocomposites, Composites Part A: Applied Science and Manufacturing 41, 2, 185–191. [CrossRef] [Google Scholar]
- Mainil M., Alexandre M., Monteverde F., Dubois P. (2006) Polyethylene Organo-Clay Nanocomposites: The Role of the Interface Chemistry on the Extent of Clay Intercalation/Exfoliation, Journal of Nanoscience and Nanotechnology 6, 2, 337–344. [PubMed] [Google Scholar]
- Lee S.-S., Hur M.H., Yang H., Lim S., Kim J. (2006) Effect of interfacial attraction on intercalation in polymer/clay nanocomposites, Journal of Applied Polymer Science 101, 5, 2749–2753. [CrossRef] [Google Scholar]
- Lyatskaya Y., Balazs A.C. (1998) Modeling the Phase Behavior of Polymer−Clay Composites, Macromolecules 31, 19, 6676–6680. [CrossRef] [Google Scholar]
- Balazs A.C., Singh C., Zhulina E. (1998) Modeling the Interactions between Polymers and Clay Surfaces through Self-Consistent Field Theory, Macromolecules 31, 23, 8370–8381. [CrossRef] [Google Scholar]
- Zhulina E., Singh C., Balazs A.C. (1999) Attraction between Surfaces in a Polymer Melt Containing Telechelic Chains: Guidelines for Controlling the Surface Separation in Intercalated Polymer−Clay Composites, Langmuir 15, 11, 3935–3943. [CrossRef] [Google Scholar]
- Lee S.-S., Kim J. (2004) Surface modification of clay and its effect on the intercalation behavior of the polymer/clay nanocomposites, Journal of Polymer Science Part B: Polymer Physics 42, 12, 2367–2372. [CrossRef] [Google Scholar]
- Flaconneche B., Martin J., Klopffer M.-H. (2001) Permeability, Diffusion and Solubility of Gases in Polyethylene, Polyamide 11 and Poly (Vinylidene Fluoride), Oil & Gas Science and Technology – Rev. IFP 56, 3, 261–278. [Google Scholar]
- Klopffer M.-H., Flaconneche B. (2001) Transport Properdines of Gases in Polymers: Bibliographic Review, Oil & Gas Science and Technology – Rev. IFP 56, 3, 223–244. [CrossRef] [EDP Sciences] [OGST] [Google Scholar]
- Stannett V. (1978) The transport of gases in synthetic polymeric membranes — an historic perspective, Journal of Membrane Science 3, 2, 97–115. [CrossRef] [Google Scholar]
- Crank J. (1975) The Mathematics of Diffusion, 2nd ed., Oxford. [Google Scholar]
- Crank J., Park G.S. (1968) Diffusion in polymers, Academic Press, London, New York, N.Y. [Google Scholar]
- Naylor T.V. (1989) Permeation Properties, in Comprehensive Polymer Science, Booth C. and Price C. (eds), Pergamon Press, Oxford, pp. 643–668. [Google Scholar]
- Koros W.J., Hellums M.W. (1985) Transport Properties, in Encyclopedia of Polymer Science and Technology, John Wiley & Sons, pp. 725–802. [Google Scholar]
- Neogi P. (1996) Transport Phenomena in Polymer Membranes, in Diffusion in Polymers, Marcel Dekker Inc., New York, pp. 173–210. [Google Scholar]
- Rogers C.E. (1964) Permeability and Chemical Resistance, in Engineering design for plastics, Baer E. (ed.), Reinhold, New York, pp. 609–688. [Google Scholar]
- Rogers C.E. (1985) Permeation of gases and vapours in polymers, in Polymer permeability, Comyn J. (ed.), Elsevier Applied Science, pp. 11–73. [Google Scholar]
- Alexander Stern S. (1994) Polymers for gas separations: the next decade, Journal of Membrane Science 94, 1, 1–65. [Google Scholar]
- Michaels A.S., Bixler H.J. (1961) Flow of gases through polyethylene, Journal of Polymer Science 50, 413–439. [Google Scholar]
- Michaels A.S., Bixler H.J. (1961) Solubility of gases in polyethylene, Journal of Polymer Science 50, 154, 393–412. [Google Scholar]
- Michaels A.S., Parker R.B. (1959) Sorption and flow of gases in polyethylene, Journal of Polymer Science 41, 138, 53–71. [Google Scholar]
- Nielsen L.E. (1967) Models for the permeability of filled polymer systems, J. Macromol. Sci. 5, A1, 929–942. [Google Scholar]
- Lape N.K., Nuxoll E.E., Cussler E.L. (2004) Polydisperse flakes in barrier films, Journal of Membrane Science 236, 1-2, 29–37. [Google Scholar]
- Waché R. (2004) Formulation et caractérisation de polyéthylènes chargés avec des argiles. Propriétés barrière des nanocomposites obtenus, Thèse, Université de Bretagne Occidentale, Brest. [Google Scholar]
- Choudalakis G., Gotsis A.D. (2009) Permeability of polymer/clay nanocomposites: A review, European Polymer Journal 45, 4, 967–984. [CrossRef] [Google Scholar]
- Bharadwaj R.K. (2001) Modeling the barrier properties of polymer-layered silicates nanocomposites, Macromol. 34, 9189–9192. [Google Scholar]
- Cussler E.L., Hughes S.E., Ward W.J., Aris R. (1988) Barrier membranes, Journal of Membrane Science 38, 161–174. [Google Scholar]
- Adame D., Beall G.W. (2009) Direct measurement of the constrained polymer region in polyamide/clay nanocomposites and the implications for gas diffusion, Applied Clay Science 42, 3-4, 545–552. [Google Scholar]
- Lu C., Mai Y.-W. (2007) Permeability modelling of polymer-layered silicate nanocomposites, Composites Science and Technology 67, 14, 2895–2902. [CrossRef] [Google Scholar]
- Gusev A.A., Lusti H.R. (2001) Rational design of nanocomposites for barrier applications, Adv. Mater. 13, 21, 1641–1643. [CrossRef] [Google Scholar]
- Fredrickson G.H., Bicerano J. (1999) Barrier properties of oriented disk composites, Journal of Chemical Physics 110, 4, 2181–2188. [Google Scholar]
- Picard E., Vermogen A., Gérard J.F., Espuche E. (2007) Barrier properties of nylon 6-montmorillonite nanocomposite membranes prepared by melt blending: Influence of the clay content and dispersion state: Consequences on modelling, Journal of Membrane Science 292, 1-2, 133–144. [Google Scholar]
- Messersmith P.B., Giannelis E.P. (1995) Synthesis and barrier properties of poly(e-caprolactone)-layered silicate nanocomposites, J. Polym. Sci., Part A 33, 1047–1057. [CrossRef] [Google Scholar]
- Yano K., Usuki A., Okada A. (1997) Synthesis and properties of polyimide-clay hybrid films, J. Polym. Sci., Part A 35, 2289–2294. [Google Scholar]
- Gorrasi G., Tammaro L., Tortora M., Vittoria V., Kaempfer D., Reichert P., Mülhaupt R. (2003) Transport properties of organic vapors in nanocomposites of isotactic polypropylene, J. Polym. Sci., Part B 41, 15, 1798–1805. [CrossRef] [Google Scholar]
- Gorrasi G., Tortora M., Vittoria V., Kaempfer D., Mülhaupt R. (2003) Transport properties of organic vapors in nanocomposites of organophilic layered silicate and syndiotactic polypropylene, Polymer 44, 3679–3685. [CrossRef] [Google Scholar]
- Gorrasi G., Tortora M., Vittoria V., Pollet E., Lepoittevin B., Alexandre M., Dubois P. (2003) Vapor properties of polycaprolactone montmorillonite nanocomposites: Effect of clay dispersion, Polymer 44, 8, 2271–2279. [CrossRef] [Google Scholar]
- Tortora M., Gorrasi G., Vittoria V., Galli G., Ritrovati S., Chiellini E. (2002) Structural characterization and transport properties of organically modified montmorillonite/polyurethane nanocomposites, Polymer 43, 6147–6157. [CrossRef] [Google Scholar]
- Klopffer M.-H., Waché R., Flaconnèche B., Vinciguerra E., Gonzalez S. (2002) Polymer clay nanocomposites for the enhancement of barrier properties to organic fluids, Nanocomposites 2002, San Diego, US, 23-25 Sept. [Google Scholar]
- Pereira de Abreu D.A., Paseiro Losada P., Angulo I., Cruz J.M. (2007) Development of new polyolefin films with nanoclays for application in food packaging, European Polymer Journal, 43, 6, 2229–2243. [CrossRef] [Google Scholar]
- Arunvisut S., Phummanee S., Somwangthanaroj A. (2007) Effect of clay on mechanical and gas barrier properties of blown film LDPE/clay nanocomposites, Journal of Applied Polymer Science 106, 4, 2210–2217. [CrossRef] [Google Scholar]
- Swain S.K., Isayev A.I. (2007) Effect of ultrasound on HDPE/clay nanocomposites: Rheology, structure and properties, Polymer 48, 1, 281–289. [Google Scholar]
- DeRocher J.P., Gettelfinger B.T., Wang J., Nuxoll E.E., Cussler E.L. (2005) Barrier membranes with different sizes of aligned flakes, Journal of Membrane Science 254, 1-2, 21–30. [CrossRef] [Google Scholar]
- Hong S.-I., Rhim J.-W. (2012) Preparation and properties of melt-intercalated linear low density polyethylene/clay nanocomposite films prepared by blow extrusion, LWT - Food Science and Technology 48, 1, 43–51. [CrossRef] [Google Scholar]
- Song P.a., Yu Y., Zhang T., Fu S., Fang Z., Wu Q. (2012) Permeability, Viscoelasticity, and Flammability Performances and Their Relationship to Polymer Nanocomposites, Industrial & Engineering Chemistry Research 51, 21, 7255–7263. [CrossRef] [Google Scholar]
- Picard E., Gauthier H., Gérard J.F., Espuche E. (2007) Influence of the intercalated cations on the surface energy of montmorillonites: Consequences for the morphology and gas barrier properties of polyethylene/montmorillonites nanocomposites, Journal of Colloid and Interface Science 307, 2, 364–376. [Google Scholar]
- Alexandre B., Colasse L., Langevin D., Mederic P., Aubry T., Chappey C., Marais S. (2010) Transport mechanisms of small molecules through polyamide 12/montmorillonite nanocomposites, J. Phys. Chem. B 114, 27, 8827–37. [CrossRef] [PubMed] [Google Scholar]
- Mittal V. (2013) Modeling and prediction of tensile modulus and oxygen permeation properties of polyethylene – layered silicate nanocomposites: Factorial and mixture designs, Journal of Reinforced Plastics and Composites 32, 4, 258–272. [CrossRef] [Google Scholar]
- Gain O., Espuche E., Pollet E., Alexandre M., Dubois P. (2005) Gas barrier properties of poly(ε-caprolactone)/clay nanocomposites: Influence of the morphology and polymer/clay interactions, Journal of Polymer Science Part B: Polymer Physics 43, 2, 205–214. [Google Scholar]
- Carrera M.C., Erdmann E., Destéfanis H.A. (2013) Barrier Properties and Structural Study of Nanocomposite of HDPE/Montmorillonite Modified with Polyvinylalcohol, Journal of Chemistry 2013, 7. [CrossRef] [Google Scholar]
- Monsiváis-Barrón A.J., Bonilla-Rios J., Ramos de Valle L.F., Palacios E. (2013) Oxygen permeation properties of HDPE-layered silicate nanocomposites, Polymer Bulletin 70, 3, 939–951. [CrossRef] [Google Scholar]
- Stannett V., Yasuda H. (1965) The Measurement of Gas and Vapor Permeation and Diffusion in Polymers, in Testing of polymers, Comyn J. (ed.), Interscience Publishers, pp.393–418. [Google Scholar]
- Flaconnèche B., Klopffer M.-H., Martin J., Taravel-Condat C. (2001) High pressure permeation of gases in semicrystalline polymers: measurement method and experimental data, 3rd MERL Conference on Oilfield Engineering with Polymers, London, 28-29 Nov. [Google Scholar]
- Brown R.P. (1981) Permeability, in Handbook of Plastics Tests Methods, Comyn J. (ed.), G. Godwin Limited, pp. 378–394. [Google Scholar]
- Waché R., Klopffer M.-H., Vinciguerra E., Gonzalez S., Moan M. (2002) Formulation et caractérisation de nanocomposites à matrice polyéthylène, Matériaux 2002, Tours, France, 21-25 Oct. [Google Scholar]
- Waché R., Klopffer M.-H., Gonzalez S., Médéric P., Moan M. (2003) Maleated polyethylene nanocomposites: influence of clay content on barrier and melt rheological properties, Eurofillers 2003, Alicante, Spain, 8-11 Sept. [Google Scholar]
- Manninen A.R., Naguib H.E., Nawaby A.V., Day M. (2005) CO2 sorption and diffusion in polymethyl methacrylate–clay nanocomposites, Polymer Engineering & Science 45, 7, 904–914. [CrossRef] [Google Scholar]
Numéro |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Numéro 2, March–April 2015
Dossier: Fluids-Polymers Interactions: Permeability, Durability
|
|
---|---|---|
Page(s) | 267 - 277 | |
DOI | https://doi.org/10.2516/ogst/2013196 | |
Publié en ligne | 20 mars 2014 |
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.