Dossier: Fluids-Polymers Interactions: Permeability, Durability
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Number 2, March–April 2015
Dossier: Fluids-Polymers Interactions: Permeability, Durability
Page(s) 251 - 266
DOI https://doi.org/10.2516/ogst/2013198
Published online 27 May 2014
  • Klopffer M.H., Flaconnèche B. (2001) Transport properties of gases in polymers: Bibliographic review, Oil & Gas Science and Technology 56, 3, 223–244. DOI: 10.2516/ogst:2001021. [CrossRef] [EDP Sciences] [OGST]
  • Benjelloun-Dabaghi Z., Benali A. (2001) Mathematical Modelling of the permeation of gases in polymers, Oil & Gas Science and Technology 56, 3, 295–303. DOI: 10.2516/ogst:2001025. [CrossRef] [EDP Sciences] [OGST]
  • Benjelloun-Dabaghi Z., de Hemptinne J.C., Jarrin J., Leroy J.M., Aubry J.C., Saas J.N., Taravel-Condat C. (2002) MOLDITM: A fluid permeation model to calculate the annulus composition in flexible pipes, Oil & Gas Science and Technology 57, 2, 177–192. DOI: 10.2516/ogst:2002014. [CrossRef] [EDP Sciences] [OGST]
  • Jarrin J., Dewimille B., Devaux E., Martin J., Piques R. (1994) Blistering of thermoplastic materials used in the petroleum industry, Society of Petroleum Engineers 28482, 203–214. DOI: 10.2118/28482-MS.
  • Rambert G., Grandidier J.C., Cangémi L., Meimon Y. (2003) A modelling of the coupled thermo-diffuso-elastic linear behaviour. Application to explosive decompression of polymers, Oil & Gas Science and Technology 58, 5, 571–591. DOI: 10.2516/ogst:2003040. [CrossRef] [EDP Sciences] [OGST]
  • Boyer S.A.E., Klopffer M.H., Martin J., Grolier J.E. (2007) Supercritical gas-polymer interactions with applications in the petroleum industry. Determination of thermophysical properties, Journal of Applied Polymer Science 103, 3, 1706–1722. DOI: 10.1002/app. 25085. [CrossRef]
  • Frisch H.L. (1957) The time lag in diffusion, The Journal of Physical Chemistry 61, 1, 93–95. DOI: 10.1021/j150547a018. [CrossRef]
  • Crank J., Park G.S. (1968) Diffusion in polymers, Academic Press, London and New-York.
  • Frisch H.L. (1970) Pressure dependence of diffusion in polymers, Journal of Elastomers & Plastics 2, 2, 130–132. DOI: 10.1177/009524437000200206. [CrossRef]
  • Fick A. (1995) On liquid diffusion, Journal of Membrane Science 100, 1, 33–38. DOI: 10.1016/0376-7388(94)00230-V. [CrossRef]
  • Prager S., Long F.A. (1951) Diffusion of hydrocarbons in polyisobutylene, Journal of American Chemical Society 73, 9, 4072–4075. DOI: 10.1021/ja01153a004. [CrossRef]
  • Crank J. (1953) A theoretical investigation of the influence of molecular relaxation and internal stress on diffusion in polymers, Journal of Polymer Science 11, 2, 151–168. DOI: 10.1002/pol.1953.120110206. [CrossRef]
  • Barrer R.M. (1957) Some properties of diffusion coefficients in polymers, The Journal of Physical Chemistry 61, 2, 178–189. DOI: 10.1021/j150548a012. [CrossRef]
  • Frisch H.L. (1980) Sorption and transport in glassy polymers - A review, Polymer Engineering and Science 20, 1, 2–13. DOI: 10.1002/pen.760200103. [CrossRef] [MathSciNet]
  • Benjelloun-Dabaghi Z. (2001) Analyse de quelques modèles de diffusion 1D non linéaire des gaz dans les polymères : identification à partir des données expérimentales, Oil & Gas Science and Technology 56, 3, 279–293. DOI: 10.2516/ogst:2001024. [CrossRef] [EDP Sciences] [OGST]
  • Suwandi M.S., Stern S.A. (1973) Transport of heavy organic vapors through silicone rubber, Journal of Polymer Science: Polymer Physics Edition 11, 4, 663–681. DOI: 10.1002/pol.1973.180110404.
  • Rogers C.E. (1985) Permeation of Gases and Vapours in Polymers, in Polymer Permeability, Comyn J. (ed.), Chapman & Hall, pp. 11–73.DOI: 10.1007/978-94-009-4858-7_2. [CrossRef]
  • Naito Y., Kamiya Y., Terada K., Mizoguchi K., Wang J.S. (1996) Pressure dependence of gas permeability in a rubbery polymer, Journal of Applied Polymer Science 61, 6, 945–950. DOI: 10.1002/(SICI)1097-4628(19960808)61:6<945::AID-APP8>3.0.CO;2-H. [CrossRef]
  • Fujita H., Kishimoto A., Matsumoto K. (1960) Concentration and temperature dependence of diffusion coefficients for systems polymethyl acrylate and n-alkyl acetates, Transactions of the Faraday Society 56, 424–437. DOI: 10.1039/TF9605600424. [CrossRef]
  • Stern S.A., Fang S.M., Frisch H.L. (1972) Effect of pressure on gas permeability coefficients. A new application of “free volume” theory, Journal of Polymer Science Part A-2: Polymer Physics 10, 2, 201–219. DOI: 10.1002/pol.1972.160100202. [CrossRef]
  • Stern S.A., Fang S.M., Frisch H.L. (1972) Effect of pressure on gas permeability coefficients. A new application of “free volume” theory, Journal of Polymer Science Part A-2: Polymer Physics 10, 3, 575. DOI: 10.1002/pol.1972.160100315. [CrossRef]
  • Naito Y., Mizoguchi K., Terada K., Kamiya Y. (1991) The effect of pressure on gas permeation through semicrystalline polymers above the glass transition temperature, Journal of Polymer Science Part B: Polymer Physics 29, 4, 457–462. DOI: 10.1002/polb.1991.090290408. [CrossRef] [MathSciNet]
  • Naito Y., Bourbon D., Terada K., Kamiya Y. (1993) Permeation of high-pressure gases in poly(ethylene-co-vinylacetate), Journal of Polymer Science Part B: Polymer Physics 31, 6, 693–697. DOI: 10.1002/polb.1993.090310609. [CrossRef] [MathSciNet]
  • Benali A., Benjelloun-Dabaghi Z., Flaconnèche B., Klopffer M.H., Martin J. (2001) Analyse et simulation de l’influence de la température et de la pression sur les coefficients de transport du CO2 dans du PVDF, Oil & Gas Science and Technology 56, 3, 305–312. DOI: 10.2516/ogst:2001026. [CrossRef] [EDP Sciences] [OGST]
  • Petropoulos J.H. (1984) Sorption-longitudinal swelling kinetic correlations in polymer film-vapor systems, Journal of Membrane Science 17, 3, 233–244. DOI: 10.1016/S0376-7388(00)83215-9. [CrossRef]
  • Govindjee S., Simo J.C. (1993) Coupled stress diffusion: case II, Journal of the Mechanics and Physics of Solids 41, 5, 863–887. DOI: 10.1016/0022-5096(93)90003-X. [CrossRef]
  • Shanati S., Ellis N.S., Randall T.J., Marshall J.M. (1995) Coupled diffusion and stress by the finite element method, Applied Mathematical Modelling 19, 2, 87–94. DOI: 10.1016/0307-904X(94)00019-3. [CrossRef]
  • Jou D., Casas-Vazquez J., Lebon G. (2001) Non classical diffusion, in Extended irreversible thermodynamics, 3rd Edition, Jou D., Casas-Vazquez J., Lebon G. (eds.), Springer, pp. 295–314. DOI: 10.1007/978-3-642-56565-6. [CrossRef]
  • Hansen H. (2004) Aspects of solubility, surfaces and diffusion in polymers, Progress in Organic Coatings 51, 1, 55–66. DOI: 10.1016/j.porgcoat.2004.05.002. [CrossRef]
  • Piccinini E., Gardini D., Doghieri F. (2006) Stress effects on mass transport in polymers: a model for volume relaxation, Composites Part A: Applied Science and Manufacturing 37, 4, 546–555. DOI: 10.1016/j.compositesa.2005.05.001. [CrossRef]
  • Minelli M., Sarti G.C. (2013) Permeability and diffusivity of CO2 in glassy polymers with and without plasticization, Journal of Membrane Science 435, 176–185. DOI: 10.1016/j.memsci.2013.02.013. [CrossRef]
  • Rambert G., Grandidier J.C. (2005) An approach to the coupled behaviour of polymers subjected to a thermo-mechanical loading in a gaseous environment, European Journal of Mechanics - A/Solids 24, 1, 151–168. DOI: 10.1016/j.euromechsol.2004.10.005. [CrossRef]
  • Rambert G., Jugla G., Grandidier J.C., Cangemi L. (2006) A modelling of the direct couplings between heat transfer, mass transport, chemical reactions and mechanical behaviour. Numerical implementation to explosive decompression, Composites: Part A Applied Science and Manufacturing 37, 4, 571–584. DOI: 10.1016/j.compositesa.2005.05.021. [CrossRef]
  • Rambert G., Grandidier J.C., Aifantis E.C. (2007) On the direct interactions between heat transfer, mass transport and chemical processes within gradient elasticity, European Journal of Mechanics - A/Solids 26, 1, 68–87. DOI: 10.1016/j.euromechsol.2005.12.002. [CrossRef] [MathSciNet]
  • Baudet C., Grandidier J.C., Cangémi L., Klopffer M.H. (2006) Numerical modeling of the PVF2 volume strain with carbone dioxide, Oil & Gas Science and Technology 61, 6, 751–757. DOI: 10.2516/ogst:2006013. [CrossRef] [EDP Sciences] [OGST]
  • Baudet C., Grandidier J.C., Cangémi L. (2009) A two-phase model for the diffuso-mechanical behaviour of semicrystalline polymers in gaseous environment, International Journal of Solids and Structures 46, 6, 1389–1401. DOI: 10.1016/j.ijsolstr.2008.11.010. [CrossRef]
  • Baudet C., Grandidier J.C., Cangémi L. (2011) A damage model for the blistering of polyvinylidene fluoride subjected to carbon dioxide decompression, Journal of the Mechanics and Physics of Solids 59, 9, 1909–1926. DOI: 10.1016/j.jmps.2011.04.010. [CrossRef]
  • Flaconnèche B., Martin J., Klopffer M.H. (2001) Permeability, diffusion and solubility of gases in polyethylene, polyamide 11 and poly(vinylidene fluoride), Oil & Gas Science and Technology 56, 3, 261–278. DOI: 10.2516/ogst:2001023. [CrossRef] [EDP Sciences] [OGST]
  • Bazourdy E., Martin J. (1999) IFP Energies nouvelles report.
  • Flaconnèche B., Martin J., Klopffer M.H. (2001) Transport properties of gases in polymers: experimental methods, Oil & Gas Science and Technology 56, 3, 245–259. DOI: 10.2516/ogst:2001022. [CrossRef] [EDP Sciences] [OGST]
  • Rogers C.E. (1964) Permeability and chemical resistance, in Engineering Design for Plastics, Baer E. (ed.), Reinhold, New York, pp. 609–688.
  • Comyn J. (1985) Polymer permeability, Comyn J. (ed.),Elsevier Applied Science Publishers, London/New York. [CrossRef]
  • Neogi P. (1996) Diffusion in Polymers, Neogi P. (ed.), Marcel Dekker, New York, p. 173.
  • Stancel A.F. (1974) Diffusion through polymers, Tobolsky A.V., Mark H.F. (eds.), Polymer Science and Materials, p. 247.
  • Naylor T.V. (1989) Permeation properties, in Comprehensive Polymers Science, Booth C., Price C. (eds.), Pergamon Press, Oxford, 2, 643–668. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.