- Aronu U.E., Hoff K.A., Svendsen H.F. (2011) CO2 capture solvent selection by combined absorption-desorption analysis, Chem. Eng. Res. Des. 89, 1197–1203. [CrossRef] [Google Scholar]
- Balaban A.T., Dinculescu A., Elguero J., Faure R. (1985) Carbon-13 NMR studies of primary amines and their corresponding 2,4,6-trimethyl-pyridinium salts, Magn. Reson. Chem. 23, 553–558. [CrossRef] [Google Scholar]
- Bishnoi S., Rochelle G.T. (2002) Absorption of carbon dioxide in aqueous piperazine/methyldiethanolamine, AIChE J. 48, 2788–2799. [Google Scholar]
- Bruder P., Svendsen H.F. (2011) Solvent comparison for post combustion CO2 capture, 1st Post Combustion Capture Conference, 17-19 May, Abu Dhabi, Kingdom of Saudi Arabia. [Google Scholar]
- Derks P.W.J., Dijkstra H.B.S. (2005) Solubility of carbon dioxide in aqueous piperazine solutions, AIChE J. 51, 2311–2327. [CrossRef] [Google Scholar]
- Hartono A., da Silva E.F., Grasdalen H., Svendsen H.F. (2007) Qualitative determination of species in DETA-H2O-CO2 system using 13C NMR spectra, Ind. Eng. Chem. Res. 46, 249–254. [CrossRef] [Google Scholar]
- Hilliard M.D. (2008) A predictive thermodynamic model for an aqueous blends of potassium carbonate, piperazine, and monoethanolamine for carbon dioxide capture from flue gas, PhD Thesis, University of Texas, Austin. [Google Scholar]
- Hu L. (2009) Phase transitional absorption method, United States Patent, 7541001. [Google Scholar]
- Jakobsen J.P., Krane J., Svendsen H.F. (2005) Liquid-phase composition determination in CO2-H2O-alkanolamine system: an NMR study, Ind. Eng. Chem. Res. 44, 9894–9903. [CrossRef] [Google Scholar]
- Jakobsen J.P., da Silva E.F., Krane J., Svendsen H.F. (2008) NMR study and quantum mechanical calculations on the 2-[(2-aminoethyl) amino]- ethianol- H2O- CO2 system, J. Magn. Reson. 191, 304–314. [CrossRef] [PubMed] [Google Scholar]
- Liu J., Wang S., Zhao B., Tong H., Chen C. (2009) Absorption of carbon dioxide in aqueous ammonia, Energy Procedia 1, 933–940. [CrossRef] [Google Scholar]
- Liu J., Wang S., Qi G., Zhao B., Chen C. (2011) Kinetics and mass transfer of carbon dioxide absorption into aqueous ammonia, Energy Procedia 4, 525–532. [CrossRef] [Google Scholar]
- Liu J., Wang S., Zhao B., Chen C. (2012) Study on mass transfer and kinetics of CO2 absorption into aqueous ammonia and piperazine blended solutions, Chem. Eng. Sci. 75, 298–308. [CrossRef] [Google Scholar]
- Pacheco M.A. (1998) Mass transfer, kinetics and rate-based modeling of reactive absorption, PhD Thesis, University of Texas, Austin. [Google Scholar]
- Parker E., Leconte N., Godet T., Belmont P. (2011) Solver-catalyzed furoquinolines synthesis: from nitrogen effects to the use of silver imidazolate polymer as a new and robust silver catalyst, Chem. Commun. 47, 343–345. [CrossRef] [Google Scholar]
- Raynal L., Alix P., Bouillon P.A., Gomez A., de Nailly M.F., Jacquin M., Kittel J., di Lella A., Mougin P., Trapy J. (2011) The DMXTM process: An original solution for lowering the cost of post-combustion carbon capture, Energy Procedia 4, 779–786. [CrossRef] [Google Scholar]
- Rinker E.B., Ashour S.S. (2000) Absorption of carbon dioxide into aqueous blends of diethanolamine and methyldiethanolamine, Ind. Eng. Chem. Res. 39, 4346–4356. [CrossRef] [Google Scholar]
- Rochelle G.T. (2009) Amine scrubbing for CO2 capture, Science 325, 1652–1654. [CrossRef] [PubMed] [Google Scholar]
- Rojey A., Cadours R., Carrette P.L., Boucot P. (2009) Method of deacidizing a gas by means of an absorbent solution with fractionated regeneration through heating, United States Patent. Pub. No.: US 2009/0199709 A1. [Google Scholar]
- Suda T., Iwaki T., Mimura T. (1996) Facile determination of dissolved species in CO2-amine-H2O system by NMR spectroscopy, Chem. Lett. 9, 777–778. [CrossRef] [Google Scholar]
- Svendsen H.F., Hessen E.T., Mejdell T. (2011) Carbon dioxide capture by absorption, challenges and possibilities, Chem. Eng. J. 171, 718–724. [CrossRef] [Google Scholar]
- Tan Y.H. (2010) Study of CO2-absorption into thermomorphic lipophilic amine solvents, PhD Thesis, University of Dortmund, Germany. [Google Scholar]
- Xu Z., Wang S., Liu J., Chen C. (2012a) Solvents with low critical solution temperature for CO2 capture, Energy Procedia 23, 64–71. [CrossRef] [Google Scholar]
- Xu Z., Wang S., Zhao B., Chen C. (2012b) Study on potential biphasic solvents: absorption capacity, CO2 loading and reaction rate, 11th International Conference on Greenhouse Gas Technologies, 18-22 Nov., Kyoto, Japan. [Google Scholar]
- Xu Z., Wang S., Chen C. (2013a) Experimental study of CO2 absorption by biphasic solvents, J. Tsinghua University (Science and Technology) 53, 3, 336–341. [Google Scholar]
- Xu Z.C., Wang S.J., Chen C.H. (2013b) Experimental Study of CO2 absorption by MAPA, DEEA, BDA and BDA/DEEA mixtures, J. Combust. Sci. Technol. 19, 2, 103–108. [Google Scholar]
- Xu Z., Wang S., Chen C. (2013c) CO2 absorption by biphasic solvents: mixtures of 1,4-Butanediamine and 2-(Diethylamino)-ethanol, Int. J. Greenhouse Gas Control 16, 107–115. [CrossRef] [Google Scholar]
- Zhang J., Agar D.W., Zhang X., Geuzebroek F. (2011) CO2 absorption in biphasic solvents with enhanced low temperature solvent regeneration, Energy Procedia 4, 67–74. [CrossRef] [Google Scholar]
- Zhang X. (2007) Studies on multiphase CO2 capture system, PhD Thesis, University of Dortmund, Germany. [Google Scholar]
Open Access
Issue |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 5, September-October 2014
Dossier: Post Combustion CO2 Capture
|
|
---|---|---|
Page(s) | 851 - 864 | |
DOI | https://doi.org/10.2516/ogst/2013155 | |
Published online | 04 December 2013 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.