Dossier: Post Combustion CO2 Capture
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 5, September-October 2014
Dossier: Post Combustion CO2 Capture
Page(s) 833 - 849
DOI https://doi.org/10.2516/ogst/2013144
Published online 29 January 2014
  • Toxvaerd S. (1990) Molecular dynamics calculation of the equation of state of alkanes, J. Chem. Phys. 93, 4290–4295. [CrossRef]
  • Ungerer P., Beauvais C., Delhommelle J., Boutin A., Rousseau B., Fuchs A.H. (2000) Optimization of the anisotropic united atoms intermolecular potential for n-alkanes, J. Chem. Phys. 112, 5499–5510. [CrossRef]
  • Delhommelle J., Tschirwitz C., Ungerer P., Granucci G., Millie P., Pattou D., Fuchs A.H. (2000) Derivation of an optimized potential model for phase equilibria (OPPE) for sulfides and thiols, J. Chem. Phys. 104, 4745–4753. [CrossRef]
  • Bourasseau E., Ungerer P., Boutin A. (2002) A general and efficient Monte Carlo method for sampling intramolecular degrees of freedom of branched and cyclic molecules, J. Phys. Chem. B 112, 5483–5491. [CrossRef]
  • Bourasseau E., Haboudou M., Boutin A., Fuchs A.H., Ungerer P. (2003) New optimization method for intermolecular potentials: Optimization of a new anisotropic united atoms potential for olefins: Prediction of equilibrium properties, J. Chem. Phys. 118, 3020–3034. [CrossRef]
  • Contreras-Camacho R.O., Ungerer P., Boutin A., Mackie A.D. (2004) Optimized intermolecular potential for aromatic hydrocarbons based on anisotropic united atoms. 1. Benzene, J. Phys. Chem. B 108, 14109–14114. [CrossRef]
  • Ahunbay M.G., Pérez-Pellitero J., Contreras-Camacho R.O., Teuler J.M., Ungerer P., Mackie A.D., Lachet V. (2005) Optimized intermolecular potential for aromatic hydrocarbons based on anisotropic united atoms. III. Polyaromatic and naphthenoaromatic hydrocarbons, J. Phys. Chem. B 109, 2970–2976. [CrossRef] [PubMed]
  • Bonnaud P., Nieto-Draghi C., Ungerer P. (2007) Anisotropic united atom model including the electrostatic interactions of methylbenzenes. I. Thermodynamic and structural properties, J. Phys. Chem. C 111, 3730–3741. [CrossRef]
  • Pérez-Pellitero J., Ungerer P., Mackie A.D. (2007) An anisotropic united atoms (AUA) potential for thiophenes, J. Phys. Chem. 111, 4460–4466. [CrossRef] [PubMed]
  • Pérez-Pellitero J., Bourasseau E., Demachy I., Ridard I., Ungerer P., Mackie A.D. (2008) Anisotropic united-atoms (AUA) potential for alcohols, J. Phys. Chem. B 112, 9853–9863. [CrossRef] [PubMed]
  • Ferrando N., Lachet V., Teuler J.M., Boutin A. (2009) Transferable force field for alcohols and polyalcohols, J. Phys. Chem. B 113, 5985–5995. [CrossRef] [PubMed]
  • Creton B., de Bruin T., Lachet V., Nieto-Draghi C. (2010) Extension of a charged anisotropic united atoms model to polycyclic aromatic compounds, J. Phys. Chem. B 114, 6522–6430. [CrossRef] [PubMed]
  • Ferrando N., Lachet V., Boutin A. (2009) Monte Carlo simulations of mixtures involving ketones and aldehydes by a direct bubble pressure calculation, J. Phys. Chem. B 114, 8680–8688. [CrossRef]
  • Ferrando N., Lachet V., Boutin A. (2011) A transferable force field to predict phase equilibria and surface tension of ethers and glycol ethers, J. Phys. Chem. B 15, 10654–10664. [CrossRef] [PubMed]
  • Ferrando N., Lachet V., Boutin A. (2012) Transferable force field for carboxylate esters: application to fatty acid methylic ester phase equilibria prediction, J. Phys. Chem. B 116, 3239–3248. [CrossRef] [PubMed]
  • Orozco G.A., Nieto-Draghi C., Mackie A.D., Lachet V. (2011) Transferable force field for equilibrium and transport properties in linear and branched monofunctional and multifunctional amines. I. Primary amines. J. Phys. Chem. B 115, 14617–14625. [CrossRef] [PubMed]
  • Orozco G.A., Nieto-Draghi C., Mackie A.D., Lachet V. (2012) Transferable force field for equilibrium and transport properties in linear, branched, and bifunctional amines II. Secondary and tertiary amines, J. Phys. Chem. B 116, 6193–6202. [CrossRef] [PubMed]
  • Rizzo R.C., Jorgensen W.L. (1999) OPLS all atom model for amines: Resolution of the amine hydration problem, J. Am. Chem. Soc. 121, 4827–4836. [CrossRef]
  • Wick C.D., Stubbs J.M., Neeraj R., Siepmann J.I. (2005) Transferable potentials for phase equilibria. 7. Primary, secondary, and tertiary amines, nitroalkanes and nitrobenzene, nitriles, amides, pyridine, and pyrimidine, J. Phys. Chem. B 109, 18974–18982. [CrossRef] [PubMed]
  • Boutard Y., Ungerer P., Teuler J.M., Ahunbay M., Sabater S., Pérez-Pellitero J., Mackie A.D., Bourasseau E. (2005) Extension of the anisotropic united atoms intermolecular potential to amines, amides and alkanols. Application to the problems of the 2004 fluid simulation challenge, Fluid Phase Equilib. 236, 25–41. [CrossRef]
  • Ungerer P., Tavitian B., Boutin A. (2005) Applications of molecular simulation in the Oil and Gas Industry, Technip, Paris, p. 267.
  • Chen K.H., Lii J.H., Fan Y., Allinger N.L. (2007) Molecular mechanics (MM4) study of amines, J. Comput. Chem. 28, 2391–2412. [CrossRef] [PubMed]
  • Abascal J.F.L., Vega C. (2005) A general purpose model for the condensed phases of water: TIP4P/2005, J. Chem. Phys. 123, 234505–234516. [CrossRef] [PubMed]
  • Vega C., Abascal L.F. (2011) Simulating water with rigid non-polarizable models: a general perspective, Phys. Chem. Chem. Phys. 13, 19663–19688. [CrossRef] [PubMed]
  • Lachet V., Creton B., de Bruin T., Bourasseau E., Desbiens N., Wilhelmsen O., Hammer M. (2012) Equilibrium and transport properties of CO2 + N2O and CO2 + NO mixtures: Molecular simulation and equation of state modelling study, Fluid Phase Equilib. 322, 66–78. [CrossRef]
  • Delhommelle J. (2000) PhD Thesis, Université Paris-Sud, Orsay, France.
  • Van-Oanh N.T., Houriez C., Rousseau B. (2010) Viscosity of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid from equilibrium and nonequilibrium molecular dynamics, Phys. Chem. Chem. Phys. 12, 930–936. [CrossRef] [PubMed]
  • Panagiotopoulos A.Z. (1987) Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble, Molec. Phys. 61, 813–826. [CrossRef]
  • Frenkel D., Smit B. (2002) Understanding molecular simulations, Academic Press, New York, p. 201. [CrossRef]
  • Andersen H. (1983) Rattle: A velocity version of the Shake algorithm for molecular dynamics calculations, J. Comp. Phys. 52, 24–34. [CrossRef]
  • Widom B. (1963) Some topics in the theory of fluids, J. Chem. Phys. 39, 2808–2812. [CrossRef]
  • Biscay F., Ghoufi A., Lachet V., Malfreyt P. (2009) Monte Carlo calculation of the methane-water interfacial tension at high pressures, J. Chem. Phys. 131, 124707. [CrossRef] [PubMed]
  • Trokhymchuk A., Alejandre J. (1999) Computer simulations of liquid/vapor interface in Lennard-Jones fluids: Some questions and answers, J. Chem. Phys. 111, 8510–8523. [CrossRef]
  • Orea P., Lopez-Lemus J., Alejandre J. (2005) Oscillatory surface tension due to finite-size effects, J. Chem. Phys. 123, 114702. [CrossRef] [PubMed]
  • Biscay F., Ghoufi A., Lachet V., Malfreyt P.J. (2009) Monte Carlo simulations of the pressure dependence of the water-acid gas interfacial tensions, J. Phys. Chem. B 113, 14277–14290. [CrossRef] [PubMed]
  • Biscay F., Ghoufi A., Goujon F., Lachet V., Malfreyt P. (2009) Calculation of the surface tension from Monte Carlo simulations: Does the model impact on the finite-size effects? J. Chem. Phys. 130, 184710. [CrossRef] [PubMed]
  • Irving J.H., Kirkwood J.G. (1950) The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics, J. Chem. Phys. 18, 817–829. [CrossRef]
  • Gloor G.J., Jackson G., Blas F.J., de Miguel E. (2005) Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials, J. Chem. Phys. 123, 134703. [CrossRef] [PubMed]
  • DIPPR 801 Thermophysical property database, DIADEM professional, 2008.
  • http://cccbdb.nist.gov.
  • Case F., Chaka A., Friend D.G., Frurip D., Golab J., Gordon P., Johnson R., Kolar P., Moore J., Mountain R.D., et al. (2005) The second industrial fluid properties simulation challenge, Fluid Phase Equilib. 236, 1–14. [CrossRef]
  • Dai J.X., Wu C.J., Bao X.G., Sun H. (2005) Prediction of the heat of mixing for binary fluids using molecular dynamics simulation, Fluid Phase Equilib. 236, 78–85. [CrossRef]
  • Friend D.G., Frurip D.J., Lemmon E.W., Morrison R.E., Olson J.D., Wilson L.C. (2005) Establishing benchmarks for the second industrial fluids simulation challenge, Fluid Phase Equilib. 236, 15–24. [CrossRef]
  • Duttcha Choudhury M.K., Mathur H.B. (1974) Heats of mixing of n-butyl amine - water and n-butyl amine - alcohol systems, J. Chem. Eng. Data 16, 145–147. [CrossRef]
  • Mato F., Berrueta J. (1978) Heat of mixing of exothermic systems, An. Quim. 74, 1290–1293.
  • Detherm Thermophysical Properties of Pure Substances and Mixtures (2007) Dechema, Frankfurt am, Main.
  • Kuchenbecker D. (1980) PhD Thesis, Leipzig.
  • Letcher T.M., Bayles J.W. (1971) Thermodynamics of some binary liquid mixtures containing aliphatic amines, J. Chem. Eng. Data 16, 266–271. [CrossRef]
  • Shah J., Dewitt J., Stoops C. (1969) Viscosity-temperature correlation for liquid aliphatic amines, J. Chem. Eng. Data 14, 333–335. [CrossRef]
  • Chang Y.P., Su. T.M., Li. T.W., Chao I. (1997) Intramolecular hydrogen bonding, gauche interactions, and thermodynamic functions of 1,2-ethanediamine, 1,2-ethanediol, and 2-aminoethanol: A global conformational analysis, J. Phys. Chem. A 101, 6107–6117. [CrossRef]
  • Batista de Carvalho L.A.E., Lourenco L.E., Marques M.P.M. (1999) Conformational study of 1,2-diaminoethane by combined ab initio MO calculations and Raman spectroscopy, J. Mol. Struct. 482–483, 639–646. [CrossRef]
  • Marstokk K.M., Mollendal H. (1978) Microwave spectrum, conformational equilibrium, intramolecular hydrogen bonding, inversion tunneling, dipole moments, and centrifugal distortion of ethylenediamine, J. Mol. Struct. 49, 221–237. [CrossRef]
  • Bryantsev V.S., Diallo M.S., Goddard W.A.I.I.I. (2007) pKa calculations of aliphatic amines, diamines, and aminoamides via density functional theory with a Poisson-Boltzmann continuum solvent model, J. Phys. Chem. A 111, 4422–4430. [CrossRef] [PubMed]
  • Gubskaya A.V., Kusalik P.K. (2004) Molecular dynamics simulation study of ethylene glycol, ethylenediamine and 2-aminoethanol. 1. The local structure in pure liquids, J. Phys. Chem. B 108, 7151–164. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.