Dossier: Post Combustion CO2 Capture
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 5, September-October 2014
Dossier: Post Combustion CO2 Capture
Page(s) 833 - 849
DOI https://doi.org/10.2516/ogst/2013144
Published online 29 January 2014
  • Toxvaerd S. (1990) Molecular dynamics calculation of the equation of state of alkanes, J. Chem. Phys. 93, 4290–4295. [CrossRef] [Google Scholar]
  • Ungerer P., Beauvais C., Delhommelle J., Boutin A., Rousseau B., Fuchs A.H. (2000) Optimization of the anisotropic united atoms intermolecular potential for n-alkanes, J. Chem. Phys. 112, 5499–5510. [CrossRef] [Google Scholar]
  • Delhommelle J., Tschirwitz C., Ungerer P., Granucci G., Millie P., Pattou D., Fuchs A.H. (2000) Derivation of an optimized potential model for phase equilibria (OPPE) for sulfides and thiols, J. Chem. Phys. 104, 4745–4753. [CrossRef] [Google Scholar]
  • Bourasseau E., Ungerer P., Boutin A. (2002) A general and efficient Monte Carlo method for sampling intramolecular degrees of freedom of branched and cyclic molecules, J. Phys. Chem. B 112, 5483–5491. [CrossRef] [Google Scholar]
  • Bourasseau E., Haboudou M., Boutin A., Fuchs A.H., Ungerer P. (2003) New optimization method for intermolecular potentials: Optimization of a new anisotropic united atoms potential for olefins: Prediction of equilibrium properties, J. Chem. Phys. 118, 3020–3034. [CrossRef] [Google Scholar]
  • Contreras-Camacho R.O., Ungerer P., Boutin A., Mackie A.D. (2004) Optimized intermolecular potential for aromatic hydrocarbons based on anisotropic united atoms. 1. Benzene, J. Phys. Chem. B 108, 14109–14114. [CrossRef] [Google Scholar]
  • Ahunbay M.G., Pérez-Pellitero J., Contreras-Camacho R.O., Teuler J.M., Ungerer P., Mackie A.D., Lachet V. (2005) Optimized intermolecular potential for aromatic hydrocarbons based on anisotropic united atoms. III. Polyaromatic and naphthenoaromatic hydrocarbons, J. Phys. Chem. B 109, 2970–2976. [CrossRef] [PubMed] [Google Scholar]
  • Bonnaud P., Nieto-Draghi C., Ungerer P. (2007) Anisotropic united atom model including the electrostatic interactions of methylbenzenes. I. Thermodynamic and structural properties, J. Phys. Chem. C 111, 3730–3741. [CrossRef] [Google Scholar]
  • Pérez-Pellitero J., Ungerer P., Mackie A.D. (2007) An anisotropic united atoms (AUA) potential for thiophenes, J. Phys. Chem. 111, 4460–4466. [CrossRef] [PubMed] [Google Scholar]
  • Pérez-Pellitero J., Bourasseau E., Demachy I., Ridard I., Ungerer P., Mackie A.D. (2008) Anisotropic united-atoms (AUA) potential for alcohols, J. Phys. Chem. B 112, 9853–9863. [CrossRef] [PubMed] [Google Scholar]
  • Ferrando N., Lachet V., Teuler J.M., Boutin A. (2009) Transferable force field for alcohols and polyalcohols, J. Phys. Chem. B 113, 5985–5995. [CrossRef] [PubMed] [Google Scholar]
  • Creton B., de Bruin T., Lachet V., Nieto-Draghi C. (2010) Extension of a charged anisotropic united atoms model to polycyclic aromatic compounds, J. Phys. Chem. B 114, 6522–6430. [CrossRef] [PubMed] [Google Scholar]
  • Ferrando N., Lachet V., Boutin A. (2009) Monte Carlo simulations of mixtures involving ketones and aldehydes by a direct bubble pressure calculation, J. Phys. Chem. B 114, 8680–8688. [CrossRef] [Google Scholar]
  • Ferrando N., Lachet V., Boutin A. (2011) A transferable force field to predict phase equilibria and surface tension of ethers and glycol ethers, J. Phys. Chem. B 15, 10654–10664. [CrossRef] [PubMed] [Google Scholar]
  • Ferrando N., Lachet V., Boutin A. (2012) Transferable force field for carboxylate esters: application to fatty acid methylic ester phase equilibria prediction, J. Phys. Chem. B 116, 3239–3248. [CrossRef] [PubMed] [Google Scholar]
  • Orozco G.A., Nieto-Draghi C., Mackie A.D., Lachet V. (2011) Transferable force field for equilibrium and transport properties in linear and branched monofunctional and multifunctional amines. I. Primary amines. J. Phys. Chem. B 115, 14617–14625. [CrossRef] [PubMed] [Google Scholar]
  • Orozco G.A., Nieto-Draghi C., Mackie A.D., Lachet V. (2012) Transferable force field for equilibrium and transport properties in linear, branched, and bifunctional amines II. Secondary and tertiary amines, J. Phys. Chem. B 116, 6193–6202. [CrossRef] [PubMed] [Google Scholar]
  • Rizzo R.C., Jorgensen W.L. (1999) OPLS all atom model for amines: Resolution of the amine hydration problem, J. Am. Chem. Soc. 121, 4827–4836. [CrossRef] [Google Scholar]
  • Wick C.D., Stubbs J.M., Neeraj R., Siepmann J.I. (2005) Transferable potentials for phase equilibria. 7. Primary, secondary, and tertiary amines, nitroalkanes and nitrobenzene, nitriles, amides, pyridine, and pyrimidine, J. Phys. Chem. B 109, 18974–18982. [CrossRef] [PubMed] [Google Scholar]
  • Boutard Y., Ungerer P., Teuler J.M., Ahunbay M., Sabater S., Pérez-Pellitero J., Mackie A.D., Bourasseau E. (2005) Extension of the anisotropic united atoms intermolecular potential to amines, amides and alkanols. Application to the problems of the 2004 fluid simulation challenge, Fluid Phase Equilib. 236, 25–41. [CrossRef] [Google Scholar]
  • Ungerer P., Tavitian B., Boutin A. (2005) Applications of molecular simulation in the Oil and Gas Industry, Technip, Paris, p. 267. [Google Scholar]
  • Chen K.H., Lii J.H., Fan Y., Allinger N.L. (2007) Molecular mechanics (MM4) study of amines, J. Comput. Chem. 28, 2391–2412. [CrossRef] [PubMed] [Google Scholar]
  • Abascal J.F.L., Vega C. (2005) A general purpose model for the condensed phases of water: TIP4P/2005, J. Chem. Phys. 123, 234505–234516. [CrossRef] [PubMed] [Google Scholar]
  • Vega C., Abascal L.F. (2011) Simulating water with rigid non-polarizable models: a general perspective, Phys. Chem. Chem. Phys. 13, 19663–19688. [CrossRef] [PubMed] [Google Scholar]
  • Lachet V., Creton B., de Bruin T., Bourasseau E., Desbiens N., Wilhelmsen O., Hammer M. (2012) Equilibrium and transport properties of CO2 + N2O and CO2 + NO mixtures: Molecular simulation and equation of state modelling study, Fluid Phase Equilib. 322, 66–78. [CrossRef] [Google Scholar]
  • Delhommelle J. (2000) PhD Thesis, Université Paris-Sud, Orsay, France. [Google Scholar]
  • Van-Oanh N.T., Houriez C., Rousseau B. (2010) Viscosity of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid from equilibrium and nonequilibrium molecular dynamics, Phys. Chem. Chem. Phys. 12, 930–936. [CrossRef] [PubMed] [Google Scholar]
  • Panagiotopoulos A.Z. (1987) Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble, Molec. Phys. 61, 813–826. [CrossRef] [Google Scholar]
  • Frenkel D., Smit B. (2002) Understanding molecular simulations, Academic Press, New York, p. 201. [CrossRef] [Google Scholar]
  • Andersen H. (1983) Rattle: A velocity version of the Shake algorithm for molecular dynamics calculations, J. Comp. Phys. 52, 24–34. [CrossRef] [Google Scholar]
  • Widom B. (1963) Some topics in the theory of fluids, J. Chem. Phys. 39, 2808–2812. [CrossRef] [Google Scholar]
  • Biscay F., Ghoufi A., Lachet V., Malfreyt P. (2009) Monte Carlo calculation of the methane-water interfacial tension at high pressures, J. Chem. Phys. 131, 124707. [CrossRef] [PubMed] [Google Scholar]
  • Trokhymchuk A., Alejandre J. (1999) Computer simulations of liquid/vapor interface in Lennard-Jones fluids: Some questions and answers, J. Chem. Phys. 111, 8510–8523. [CrossRef] [Google Scholar]
  • Orea P., Lopez-Lemus J., Alejandre J. (2005) Oscillatory surface tension due to finite-size effects, J. Chem. Phys. 123, 114702. [CrossRef] [PubMed] [Google Scholar]
  • Biscay F., Ghoufi A., Lachet V., Malfreyt P.J. (2009) Monte Carlo simulations of the pressure dependence of the water-acid gas interfacial tensions, J. Phys. Chem. B 113, 14277–14290. [CrossRef] [PubMed] [Google Scholar]
  • Biscay F., Ghoufi A., Goujon F., Lachet V., Malfreyt P. (2009) Calculation of the surface tension from Monte Carlo simulations: Does the model impact on the finite-size effects? J. Chem. Phys. 130, 184710. [CrossRef] [PubMed] [Google Scholar]
  • Irving J.H., Kirkwood J.G. (1950) The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics, J. Chem. Phys. 18, 817–829. [CrossRef] [Google Scholar]
  • Gloor G.J., Jackson G., Blas F.J., de Miguel E. (2005) Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials, J. Chem. Phys. 123, 134703. [CrossRef] [PubMed] [Google Scholar]
  • DIPPR 801 Thermophysical property database, DIADEM professional, 2008. [Google Scholar]
  • http://cccbdb.nist.gov. [Google Scholar]
  • Case F., Chaka A., Friend D.G., Frurip D., Golab J., Gordon P., Johnson R., Kolar P., Moore J., Mountain R.D., et al. (2005) The second industrial fluid properties simulation challenge, Fluid Phase Equilib. 236, 1–14. [CrossRef] [Google Scholar]
  • Dai J.X., Wu C.J., Bao X.G., Sun H. (2005) Prediction of the heat of mixing for binary fluids using molecular dynamics simulation, Fluid Phase Equilib. 236, 78–85. [CrossRef] [Google Scholar]
  • Friend D.G., Frurip D.J., Lemmon E.W., Morrison R.E., Olson J.D., Wilson L.C. (2005) Establishing benchmarks for the second industrial fluids simulation challenge, Fluid Phase Equilib. 236, 15–24. [CrossRef] [Google Scholar]
  • Duttcha Choudhury M.K., Mathur H.B. (1974) Heats of mixing of n-butyl amine - water and n-butyl amine - alcohol systems, J. Chem. Eng. Data 16, 145–147. [CrossRef] [Google Scholar]
  • Mato F., Berrueta J. (1978) Heat of mixing of exothermic systems, An. Quim. 74, 1290–1293. [Google Scholar]
  • Detherm Thermophysical Properties of Pure Substances and Mixtures (2007) Dechema, Frankfurt am, Main. [Google Scholar]
  • Kuchenbecker D. (1980) PhD Thesis, Leipzig. [Google Scholar]
  • Letcher T.M., Bayles J.W. (1971) Thermodynamics of some binary liquid mixtures containing aliphatic amines, J. Chem. Eng. Data 16, 266–271. [CrossRef] [Google Scholar]
  • Shah J., Dewitt J., Stoops C. (1969) Viscosity-temperature correlation for liquid aliphatic amines, J. Chem. Eng. Data 14, 333–335. [CrossRef] [Google Scholar]
  • Chang Y.P., Su. T.M., Li. T.W., Chao I. (1997) Intramolecular hydrogen bonding, gauche interactions, and thermodynamic functions of 1,2-ethanediamine, 1,2-ethanediol, and 2-aminoethanol: A global conformational analysis, J. Phys. Chem. A 101, 6107–6117. [CrossRef] [Google Scholar]
  • Batista de Carvalho L.A.E., Lourenco L.E., Marques M.P.M. (1999) Conformational study of 1,2-diaminoethane by combined ab initio MO calculations and Raman spectroscopy, J. Mol. Struct. 482–483, 639–646. [CrossRef] [Google Scholar]
  • Marstokk K.M., Mollendal H. (1978) Microwave spectrum, conformational equilibrium, intramolecular hydrogen bonding, inversion tunneling, dipole moments, and centrifugal distortion of ethylenediamine, J. Mol. Struct. 49, 221–237. [CrossRef] [Google Scholar]
  • Bryantsev V.S., Diallo M.S., Goddard W.A.I.I.I. (2007) pKa calculations of aliphatic amines, diamines, and aminoamides via density functional theory with a Poisson-Boltzmann continuum solvent model, J. Phys. Chem. A 111, 4422–4430. [CrossRef] [PubMed] [Google Scholar]
  • Gubskaya A.V., Kusalik P.K. (2004) Molecular dynamics simulation study of ethylene glycol, ethylenediamine and 2-aminoethanol. 1. The local structure in pure liquids, J. Phys. Chem. B 108, 7151–164. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.