Dossier: Post Combustion CO2 Capture
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 5, September-October 2014
Dossier: Post Combustion CO2 Capture
Page(s) 865 - 884
DOI https://doi.org/10.2516/ogst/2013150
Published online 23 December 2013
  • Aleixo M., Prigent M., Gibert A., Porcheron F., Mokbel I., Jose J., Jacquin M. (2011) Physical and chemical properties of DMXTM solvents, Energy Procedia 4, 148–155. [CrossRef] [Google Scholar]
  • Ali S.H. (2004) Kinetic study of the reaction of diethanolamine with carbon dioxide in aqueous and mixed solvent systems-application to acid gas cleaning, Sep. Purifi. Technol 38, 3, 281–296. [CrossRef] [Google Scholar]
  • Ali S.H. (2005) Kinetics of the reaction of carbon dioxide with blends of amines in aqueous media using the stopped-flow technique, Int. J. Chem. Kinet. 37, 7, 391–405. [CrossRef] [Google Scholar]
  • Ali S.H., Merchant S.Q., Fahim M.A. (2000) Kinetic study of reactive absorption of some primary amines with carbon dioxide in ethanol solution, Sep. Purifi. Technol. 18, 3, 163–175. [CrossRef] [Google Scholar]
  • Ali S.H., Merchant S.Q., Fahim M.A. (2002) Reaction kinetics of some secondary alkanolamines with carbon dioxide in aqueous solutions by stopped flow technique, Sep. Purifi. Technol. 27, 2, 121–136. [CrossRef] [Google Scholar]
  • Ali S.H., Al-Rashed O., Merchant S.Q. (2010) Opportunities for faster carbon dioxide removal: A kinetic study on the blending of methyl monoethanolamine and morpholine with 2-amino-2-methyl-1-propanol, Sep. Purifi. Technol. 74, 1, 64–72. [CrossRef] [Google Scholar]
  • Alper E. (1990a) Kinetics of Reactions of Carbon-Dioxide with Diglycolamine and Morpholine, Chem. Eng. J. 44, 2, 107–111. [CrossRef] [Google Scholar]
  • Alper E. (1990b) Reaction mechanism and kinetics of aqueous solutions of 2-amino-2-methyl-1-propanol and carbon dioxide, Ind. Eng. Chem. Res. 29, 8, 1725–1728. [CrossRef] [Google Scholar]
  • Atkins P., de Paula J. (2006) Physical Chemistry, 8th edn., Oxford University Press, Oxford. [Google Scholar]
  • Barrie P.J. (2012) The mathematical origins of the kinetic compensation effect: 1. the effect of random experimental errors, Phys. Chem. Chem. Phys. 14, 1, 318–326. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Barth D., Tondre C., Lappai G., Delpuech J.J. (1981) Kinetic study of carbon dioxide reaction with tertiary amines in aqueous solutions, J. Phys. Chem. 85, 24, 3660–3667. [CrossRef] [Google Scholar]
  • Barth D., Tondre C., Delpuech J.J. (1983) Stopped-flow determination of carbon dioxide-diethanolamine reaction mechanism: Kinetics of carbamate formation, Int. J. Chem. Kinet. 15, 11, 1147–1160. [CrossRef] [Google Scholar]
  • Barth D., Tondre C., Delpuech J.J. (1984) Kinetics and mechanisms of the reactions of carbon dioxide with alkanolamines: a discussion concerning the cases of MDEA and DEA, Chem. Eng. Sci. 39, 12, 1753–1757. [CrossRef] [Google Scholar]
  • Barth D., Tondre C., Delpuech J.-J. (1986) Stopped-flow investigations of the reaction kinetics of carbon dioxide with some primary and secondary alkanolamines in aqueous solutions, Int. J. Chem. Kinet. 18, 4, 445–457. [CrossRef] [Google Scholar]
  • Bouhamra W., Bavbek O., Alper E. (1999) Reaction mechanism and kinetics of aqueous solutions of 2-amino-2-methyl-1,3-propandiol and carbon dioxide, Chem. Eng. J. 73, 1, 67–70. [CrossRef] [Google Scholar]
  • Bavbek O., Alper E. (1999) Reaction mechanism and kinetics of aqueous solutions of primary and secondary alkanolamines and carbon dioxide, Turkish J. Chem. 23, 3, 293–300. [Google Scholar]
  • Caplow M. (1968) Kinetics of carbamate formation and breakdown, J. Am. Chem. Soc. 90, 24, 6795–6803. [CrossRef] [Google Scholar]
  • Charpentier J.C. (1981) Mass-Transfer Rates in Gas-Liquid Absorbers and Reactors, in Advances in Chemical Engineering, Thomas B.D. (ed.), Academic Press. [Google Scholar]
  • Chemicalize (2012a) http://www.chemicalize.org/structure/#!mol=CCNCCO&source=calculate. [Google Scholar]
  • Chemicalize (2012b) http://www.chemicalize.org/structure/#!mol=CCCCNCCO&source=calculate. [Google Scholar]
  • Chemicalize (2012c) http://www.chemicalize.org/structure/#!mol=2-amino-2-methylpropan-1%2C3-diol&source=fp. [Google Scholar]
  • Chemicalize (2012d) http://www.chemicalize.org/structure/#!mol=2-amino-2-hydroxymethyl-1%2C3-propanediol&source=calculate. [Google Scholar]
  • Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Pachauri R.K., Reisinger A. (2008) Climate Change 2007: Synthesis Report, IPCC, Geneva. [Google Scholar]
  • Conway W., Wang X., Fernandes D., Burns R., Lawrance G., Puxty G., Maeder M. (2011) Comprehensive kinetic and thermodynamic study of the reactions of CO2(aq) and HCO3- with monoethanolamine (MEA) in aqueous solution, J. Phys. Chem. A 115, 50, 14340–14349. [CrossRef] [PubMed] [Google Scholar]
  • Conway W., Wang X., Fernandes D., Burns R., Lawrance G., Puxty G., Maeder M. (2012) Toward Rational Design of Amine Solutions for PCC Applications: The Kinetics of the Reaction of CO2(aq) with Cyclic and Secondary Amines in Aqueous Solution, Environ. Sci. Technol. 46, 13, 7422–7429. [CrossRef] [PubMed] [Google Scholar]
  • Crooks J.E., Donnellan J.P. (1988) Kinetics of the formation of N, N-dialkylcarbamate from diethanolamine and carbon dioxide in anhydrous ethanol, J. Chem. Soc. Perkin Trans. 2, 2, 191–194. [CrossRef] [Google Scholar]
  • Crooks J.E., Donnellan J.P. (1989) Kinetics and mechanism of the reaction between carbon dioxide and amines in aqueous solution, J. Chem. Soc. Perkin Trans. 2, 4, 331–333. [CrossRef] [Google Scholar]
  • Crooks J.E., Donnellan J.P. (1990) Kinetics of the reaction between carbon dioxide and tertiary amines, J. Organic Chem. 55, 4, 1372–1374. [CrossRef] [Google Scholar]
  • da Silva E.F., Svendsen H.F. (2004) Ab Initio Study of the Reaction of Carbamate Formation from CO2 and Alkanolamines, Ind. Eng. Chem. Res. 43, 13, 3413–3418. [CrossRef] [Google Scholar]
  • da Silva E.F., Svendsen H.F. (2007) Computational chemistry study of reactions, equilibrium and kinetics of chemical CO2 absorption, Int. J. Greenhouse Gas Control 1, 2, 151–157. [CrossRef] [Google Scholar]
  • Danckwerts P.V. (1970) Gas liquid reactions, McGraw-Hill Book Company, London. [Google Scholar]
  • Danckwerts P.V. (1979) The reaction of CO2 with ethanolamines, Chem. Eng. Sci. 34, 4, 443–446. [CrossRef] [Google Scholar]
  • de Coninck H. (2010) Advocacy for carbon capture and storage could arouse distrust, Nature 463, 7279, 293–293. [CrossRef] [PubMed] [Google Scholar]
  • Donaldson T.L., Nguyen Y.N. (1980) Carbon Dioxide Reaction Kinetics and Transport in Aqueous Amine Membranes, Ind. Eng. Chem. Fundam. 19, 3, 260–266. [CrossRef] [Google Scholar]
  • Gordesli F.P., Alper E. (2011) The kinetics of carbon dioxide capture by solutions of piperazine and N-methyl piperazine, Int. J. Global Warming 3, 1, 67–76. [CrossRef] [Google Scholar]
  • Hamborg E.S., Versteeg G.F. (2009) Dissociation Constants and Thermodynamic Properties of Amines and Alkanolamines from (293 to 353) K, J. Chem. Eng. Data 54, 4, 1318–1328. [CrossRef] [Google Scholar]
  • Henni A., Li J., Tontiwachwuthikul P. (2008) Reaction Kinetics of CO2 in Aqueous 1-Amino-2-Propanol, 3-Amino-1-Propanol, and Dimethylmonoethanolamine Solutions in the Temperature Range of 298–313 K Using the Stopped-Flow Technique, Ind. Eng. Chem. Res. 47, 7, 2213–2220. [CrossRef] [Google Scholar]
  • Iida K., Sato H. (2012) Proton Transfer Step in the Carbon Dioxide Capture by Monoethanolamine: A Theoretical Study at the Molecular Level, The Journal of Physical Chemistry B 116, 7, 2244–2248. [CrossRef] [PubMed] [Google Scholar]
  • Kadiwala S., Rayer A.V., Henni A. (2012) Kinetics of carbon dioxide (CO2) with ethylenediamine, 3-amino-1-propanol in methanol and ethanol, and with 1-dimethylamino-2-propanol and 3-dimethylamino-1-propanol in water using stopped-flow technique, Chem. Eng. J. 179, 262–271. [CrossRef] [Google Scholar]
  • Kumar P.S., Hogendoorn J.A., Versteeg G.F., Feron P.H.M. (2003) Kinetics of the reaction of CO2 with aqueous potassium salt of taurine and glycine, AIChE J. 49, 1, 203–213. [CrossRef] [Google Scholar]
  • Laurent A., Charpentier J.C. (1974) Aires interfaciales et coefficients de transfert de matière dans les divers types d’absorbeurs et de réacteurs gaz–liquide, Chem. Eng. J. 8, 2, 85–101. [CrossRef] [Google Scholar]
  • Laurent A., Prost C., Charpentier J.-C. (1975) Détermination par méthode chimique des aires interfaciales et des coefficients de transfert de matière dans les divers types d’absorbeurs et de réacteurs gaz-liquide, Journal de Chimie Physique 72, 2, 236–244. [Google Scholar]
  • Lecomte F., Broutin P., Lebas E. (2010) Le captage du CO2, des technologies pour réduire les émissions de gaz à effet de serre, Technip, Paris. [Google Scholar]
  • Li J., Henni A., Tontiwachwuthikul P. (2007) Reaction Kinetics of CO2 in Aqueous Ethylenediamine, Ethyl Ethanolamine, and Diethyl Monoethanolamine Solutions in the Temperature Range of 298–313 K, Using the Stopped-Flow Technique, Ind. Eng. Chem. Res. 46, 13, 4426–4434. [CrossRef] [Google Scholar]
  • Littel R.J., van Swaaij W.P.M., Versteeg G.F. (1990a) Kinetics of Carbon Dioxide with tertiary Amines in aqueous solution, AIChE J. 36, 11, 1633–1640. [CrossRef] [Google Scholar]
  • Littel R.J., Bos M., Knoop G.J. (1990b) Dissociation constants of some alkanolamines at 293, 303, 318, and 333 K, J. Chem. Eng. Data 35, 3, 276–277. [CrossRef] [Google Scholar]
  • Liu L., Guo Q.X. (2001) Isokinetic relationship, isoequilibrium relationship, and enthalpy-entropy compensation, Chem. Rev. 101, 3, 673–695. [CrossRef] [PubMed] [Google Scholar]
  • McCann N., Phan D., Wang X., Conway W., Burns R., Attalla M., Puxty G., Maeder M. (2009) Kinetics and Mechanism of Carbamate Formation from CO2(aq), Carbonate Species, and Monoethanolamine in Aqueous Solution, J. Phys. Chem. A 113, 17, 5022–5029. [CrossRef] [PubMed] [Google Scholar]
  • McCann N., Phan D., Fernandes D., Maeder M. (2011) A systematic investigation of carbamate stability constants by 1H NMR, Int. J. Greenhouse Gas Control 5, 3, 396–400. [CrossRef] [Google Scholar]
  • Pinsent B.R.W., Pearson L., Roughton F.J.W. (1956) The kinetics of combination of carbon dioxide with hydroxide ions, Trans. Faraday Soc. 52, 1512–1520. [CrossRef] [Google Scholar]
  • Puxty G., Rowland R., Attalla M. (2010) Comparison of the rate of CO2 absorption into aqueous ammonia and monoethanolamine, Chem. Eng. Sci. 65, 2, 915–922. [CrossRef] [Google Scholar]
  • Rayer A.V., Sumon K.Z., Henni A., Tontiwachwuthikul P. (2011) Kinetics of the reaction of carbon dioxide (CO2) with cyclic amines using the stopped-flow technique, Energy Procedia 4, 140–147. [CrossRef] [Google Scholar]
  • Raynal L., Alix P., Bouillon P.A., Gomez A., le Febvre de Nailly M., Jacquin M., Kittel J., di Lella A., Mougin P., Trapy J. (2011) The DMXTM process: An original solution for lowering the cost of post-combustion carbon capture, Energy Procedia 4, 779–786. [CrossRef] [Google Scholar]
  • Rinker E.B., Ashour S.S., Sandall O.C. (1996) Kinetics and Modeling of Carbon Dioxide Absorption into Aqueous Solutions of Diethanolamine, Ind. Eng. Chem. Res. 35, 4, 1107–1114. [CrossRef] [Google Scholar]
  • Sartori G., Savage D.W. (1983) Sterically hindered amines for carbon dioxide removal from gases, Ind. Eng. Chem. Fundam. 22, 2, 239–249. [CrossRef] [Google Scholar]
  • Scacchi G., Bouchy M., Foucaut J.M., Zahraa O. (1996) Cinétique et catalyse, Technique & documentation, Paris. [Google Scholar]
  • Soli A.L., Byrne R.H. (2002) CO2 system hydration and dehydration kinetics and the equilibrium CO2/H2CO3 ratio in aqueous NaCl solution, Marine Chem. 78, 2-3, 65–73. [CrossRef] [Google Scholar]
  • Taft R.W. (1976) Progress in physical organic chemistry, John Whiley & Sons Inc., New York. [Google Scholar]
  • Ume C.S., Ozturk M.C., Alper E. (2012) Kinetics of CO2 Absorption by a Blended Aqueous Amine Solution, Chem. Eng. Technol. 35, 3, 464–468. [CrossRef] [Google Scholar]
  • Ume C.S., Alper E. (2012) Reaction kinetics of carbon dioxide with 2-amino-2-hydroxymethyl-1,3-propanediol in aqueous solution obtained from the stopped flow method, Turkish J. Chem. 36, 3, 427–435. [Google Scholar]
  • van Loo S., van Elk E.P., Versteeg G.F. (2007) The removal of carbon dioxide with activated solutions of methyl-diethanol-amine, J. Petrol. Sci. Eng. 55, 1–2, 135–145. [CrossRef] [Google Scholar]
  • Versteeg G.F., van Swaaij W.P.M. (1988a) On the Kinetics Between CO2 and Alkanolamines Both in Aqueous and Non-Aqueous Solutions. 1. Primary and Secondary-Amines, Chem. Eng. Sci. 43, 3, 573–585. [CrossRef] [Google Scholar]
  • Versteeg G.F., van Swaaij W.P.M. (1988b) On the kinetics between CO2 and alkanolamines Both in Aqueous and Non-Aqueous Solutions. 2. Tertiary amines, Chem. Eng. Sci. 43, 3, 587–591. [CrossRef] [Google Scholar]
  • Wang X., Conway W., Fernandes D., Lawrance G., Burns R., Puxty G., Maeder M. (2011) Kinetics of the Reversible Reaction of CO2(aq) with Ammonia in Aqueous Solution, J. Phys. Chem. A 115, 24, 6405–6412. [CrossRef] [PubMed] [Google Scholar]
  • Xiang Q., Fang M., Yu H., Maeder M. (2012) Kinetics of the Reversible Reaction of CO2(aq) and HCO3- with Sarcosine Salt in Aqueous Solution, J. Phys. Chem. A 116, 42, 10276–10284. [CrossRef] [PubMed] [Google Scholar]
  • Yu W.C., Astarita G., Savage D.W. (1985) Kinetics of carbon dioxide absorption in solutions of methyldiethanolamine, Chem. Eng. Sci. 40, 8, 1585–1590. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.