Dossier: Post Combustion CO2 Capture
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 5, September-October 2014
Dossier: Post Combustion CO2 Capture
Page(s) 865 - 884
DOI https://doi.org/10.2516/ogst/2013150
Published online 23 December 2013
  • Aleixo M., Prigent M., Gibert A., Porcheron F., Mokbel I., Jose J., Jacquin M. (2011) Physical and chemical properties of DMXTM solvents, Energy Procedia 4, 148–155. [CrossRef]
  • Ali S.H. (2004) Kinetic study of the reaction of diethanolamine with carbon dioxide in aqueous and mixed solvent systems-application to acid gas cleaning, Sep. Purifi. Technol 38, 3, 281–296. [CrossRef]
  • Ali S.H. (2005) Kinetics of the reaction of carbon dioxide with blends of amines in aqueous media using the stopped-flow technique, Int. J. Chem. Kinet. 37, 7, 391–405. [CrossRef]
  • Ali S.H., Merchant S.Q., Fahim M.A. (2000) Kinetic study of reactive absorption of some primary amines with carbon dioxide in ethanol solution, Sep. Purifi. Technol. 18, 3, 163–175. [CrossRef]
  • Ali S.H., Merchant S.Q., Fahim M.A. (2002) Reaction kinetics of some secondary alkanolamines with carbon dioxide in aqueous solutions by stopped flow technique, Sep. Purifi. Technol. 27, 2, 121–136. [CrossRef]
  • Ali S.H., Al-Rashed O., Merchant S.Q. (2010) Opportunities for faster carbon dioxide removal: A kinetic study on the blending of methyl monoethanolamine and morpholine with 2-amino-2-methyl-1-propanol, Sep. Purifi. Technol. 74, 1, 64–72. [CrossRef]
  • Alper E. (1990a) Kinetics of Reactions of Carbon-Dioxide with Diglycolamine and Morpholine, Chem. Eng. J. 44, 2, 107–111. [CrossRef]
  • Alper E. (1990b) Reaction mechanism and kinetics of aqueous solutions of 2-amino-2-methyl-1-propanol and carbon dioxide, Ind. Eng. Chem. Res. 29, 8, 1725–1728. [CrossRef]
  • Atkins P., de Paula J. (2006) Physical Chemistry, 8th edn., Oxford University Press, Oxford.
  • Barrie P.J. (2012) The mathematical origins of the kinetic compensation effect: 1. the effect of random experimental errors, Phys. Chem. Chem. Phys. 14, 1, 318–326. [NASA ADS] [CrossRef] [PubMed]
  • Barth D., Tondre C., Lappai G., Delpuech J.J. (1981) Kinetic study of carbon dioxide reaction with tertiary amines in aqueous solutions, J. Phys. Chem. 85, 24, 3660–3667. [CrossRef]
  • Barth D., Tondre C., Delpuech J.J. (1983) Stopped-flow determination of carbon dioxide-diethanolamine reaction mechanism: Kinetics of carbamate formation, Int. J. Chem. Kinet. 15, 11, 1147–1160. [CrossRef]
  • Barth D., Tondre C., Delpuech J.J. (1984) Kinetics and mechanisms of the reactions of carbon dioxide with alkanolamines: a discussion concerning the cases of MDEA and DEA, Chem. Eng. Sci. 39, 12, 1753–1757. [CrossRef]
  • Barth D., Tondre C., Delpuech J.-J. (1986) Stopped-flow investigations of the reaction kinetics of carbon dioxide with some primary and secondary alkanolamines in aqueous solutions, Int. J. Chem. Kinet. 18, 4, 445–457. [CrossRef]
  • Bouhamra W., Bavbek O., Alper E. (1999) Reaction mechanism and kinetics of aqueous solutions of 2-amino-2-methyl-1,3-propandiol and carbon dioxide, Chem. Eng. J. 73, 1, 67–70. [CrossRef]
  • Bavbek O., Alper E. (1999) Reaction mechanism and kinetics of aqueous solutions of primary and secondary alkanolamines and carbon dioxide, Turkish J. Chem. 23, 3, 293–300.
  • Caplow M. (1968) Kinetics of carbamate formation and breakdown, J. Am. Chem. Soc. 90, 24, 6795–6803. [CrossRef]
  • Charpentier J.C. (1981) Mass-Transfer Rates in Gas-Liquid Absorbers and Reactors, in Advances in Chemical Engineering, Thomas B.D. (ed.), Academic Press.
  • Chemicalize (2012a) http://www.chemicalize.org/structure/#!mol=CCNCCO&source=calculate.
  • Chemicalize (2012b) http://www.chemicalize.org/structure/#!mol=CCCCNCCO&source=calculate.
  • Chemicalize (2012c) http://www.chemicalize.org/structure/#!mol=2-amino-2-methylpropan-1%2C3-diol&source=fp.
  • Chemicalize (2012d) http://www.chemicalize.org/structure/#!mol=2-amino-2-hydroxymethyl-1%2C3-propanediol&source=calculate.
  • Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Pachauri R.K., Reisinger A. (2008) Climate Change 2007: Synthesis Report, IPCC, Geneva.
  • Conway W., Wang X., Fernandes D., Burns R., Lawrance G., Puxty G., Maeder M. (2011) Comprehensive kinetic and thermodynamic study of the reactions of CO2(aq) and HCO3- with monoethanolamine (MEA) in aqueous solution, J. Phys. Chem. A 115, 50, 14340–14349. [CrossRef] [PubMed]
  • Conway W., Wang X., Fernandes D., Burns R., Lawrance G., Puxty G., Maeder M. (2012) Toward Rational Design of Amine Solutions for PCC Applications: The Kinetics of the Reaction of CO2(aq) with Cyclic and Secondary Amines in Aqueous Solution, Environ. Sci. Technol. 46, 13, 7422–7429. [CrossRef] [PubMed]
  • Crooks J.E., Donnellan J.P. (1988) Kinetics of the formation of N, N-dialkylcarbamate from diethanolamine and carbon dioxide in anhydrous ethanol, J. Chem. Soc. Perkin Trans. 2, 2, 191–194. [CrossRef]
  • Crooks J.E., Donnellan J.P. (1989) Kinetics and mechanism of the reaction between carbon dioxide and amines in aqueous solution, J. Chem. Soc. Perkin Trans. 2, 4, 331–333. [CrossRef]
  • Crooks J.E., Donnellan J.P. (1990) Kinetics of the reaction between carbon dioxide and tertiary amines, J. Organic Chem. 55, 4, 1372–1374. [CrossRef]
  • da Silva E.F., Svendsen H.F. (2004) Ab Initio Study of the Reaction of Carbamate Formation from CO2 and Alkanolamines, Ind. Eng. Chem. Res. 43, 13, 3413–3418. [CrossRef]
  • da Silva E.F., Svendsen H.F. (2007) Computational chemistry study of reactions, equilibrium and kinetics of chemical CO2 absorption, Int. J. Greenhouse Gas Control 1, 2, 151–157. [CrossRef]
  • Danckwerts P.V. (1970) Gas liquid reactions, McGraw-Hill Book Company, London.
  • Danckwerts P.V. (1979) The reaction of CO2 with ethanolamines, Chem. Eng. Sci. 34, 4, 443–446. [CrossRef]
  • de Coninck H. (2010) Advocacy for carbon capture and storage could arouse distrust, Nature 463, 7279, 293–293. [CrossRef] [PubMed]
  • Donaldson T.L., Nguyen Y.N. (1980) Carbon Dioxide Reaction Kinetics and Transport in Aqueous Amine Membranes, Ind. Eng. Chem. Fundam. 19, 3, 260–266. [CrossRef]
  • Gordesli F.P., Alper E. (2011) The kinetics of carbon dioxide capture by solutions of piperazine and N-methyl piperazine, Int. J. Global Warming 3, 1, 67–76. [CrossRef]
  • Hamborg E.S., Versteeg G.F. (2009) Dissociation Constants and Thermodynamic Properties of Amines and Alkanolamines from (293 to 353) K, J. Chem. Eng. Data 54, 4, 1318–1328. [CrossRef]
  • Henni A., Li J., Tontiwachwuthikul P. (2008) Reaction Kinetics of CO2 in Aqueous 1-Amino-2-Propanol, 3-Amino-1-Propanol, and Dimethylmonoethanolamine Solutions in the Temperature Range of 298–313 K Using the Stopped-Flow Technique, Ind. Eng. Chem. Res. 47, 7, 2213–2220. [CrossRef]
  • Iida K., Sato H. (2012) Proton Transfer Step in the Carbon Dioxide Capture by Monoethanolamine: A Theoretical Study at the Molecular Level, The Journal of Physical Chemistry B 116, 7, 2244–2248. [CrossRef] [PubMed]
  • Kadiwala S., Rayer A.V., Henni A. (2012) Kinetics of carbon dioxide (CO2) with ethylenediamine, 3-amino-1-propanol in methanol and ethanol, and with 1-dimethylamino-2-propanol and 3-dimethylamino-1-propanol in water using stopped-flow technique, Chem. Eng. J. 179, 262–271. [CrossRef]
  • Kumar P.S., Hogendoorn J.A., Versteeg G.F., Feron P.H.M. (2003) Kinetics of the reaction of CO2 with aqueous potassium salt of taurine and glycine, AIChE J. 49, 1, 203–213. [CrossRef]
  • Laurent A., Charpentier J.C. (1974) Aires interfaciales et coefficients de transfert de matière dans les divers types d’absorbeurs et de réacteurs gaz–liquide, Chem. Eng. J. 8, 2, 85–101. [CrossRef]
  • Laurent A., Prost C., Charpentier J.-C. (1975) Détermination par méthode chimique des aires interfaciales et des coefficients de transfert de matière dans les divers types d’absorbeurs et de réacteurs gaz-liquide, Journal de Chimie Physique 72, 2, 236–244.
  • Lecomte F., Broutin P., Lebas E. (2010) Le captage du CO2, des technologies pour réduire les émissions de gaz à effet de serre, Technip, Paris.
  • Li J., Henni A., Tontiwachwuthikul P. (2007) Reaction Kinetics of CO2 in Aqueous Ethylenediamine, Ethyl Ethanolamine, and Diethyl Monoethanolamine Solutions in the Temperature Range of 298–313 K, Using the Stopped-Flow Technique, Ind. Eng. Chem. Res. 46, 13, 4426–4434. [CrossRef]
  • Littel R.J., van Swaaij W.P.M., Versteeg G.F. (1990a) Kinetics of Carbon Dioxide with tertiary Amines in aqueous solution, AIChE J. 36, 11, 1633–1640. [CrossRef]
  • Littel R.J., Bos M., Knoop G.J. (1990b) Dissociation constants of some alkanolamines at 293, 303, 318, and 333 K, J. Chem. Eng. Data 35, 3, 276–277. [CrossRef]
  • Liu L., Guo Q.X. (2001) Isokinetic relationship, isoequilibrium relationship, and enthalpy-entropy compensation, Chem. Rev. 101, 3, 673–695. [CrossRef] [PubMed]
  • McCann N., Phan D., Wang X., Conway W., Burns R., Attalla M., Puxty G., Maeder M. (2009) Kinetics and Mechanism of Carbamate Formation from CO2(aq), Carbonate Species, and Monoethanolamine in Aqueous Solution, J. Phys. Chem. A 113, 17, 5022–5029. [CrossRef] [PubMed]
  • McCann N., Phan D., Fernandes D., Maeder M. (2011) A systematic investigation of carbamate stability constants by 1H NMR, Int. J. Greenhouse Gas Control 5, 3, 396–400. [CrossRef]
  • Pinsent B.R.W., Pearson L., Roughton F.J.W. (1956) The kinetics of combination of carbon dioxide with hydroxide ions, Trans. Faraday Soc. 52, 1512–1520. [CrossRef]
  • Puxty G., Rowland R., Attalla M. (2010) Comparison of the rate of CO2 absorption into aqueous ammonia and monoethanolamine, Chem. Eng. Sci. 65, 2, 915–922. [CrossRef]
  • Rayer A.V., Sumon K.Z., Henni A., Tontiwachwuthikul P. (2011) Kinetics of the reaction of carbon dioxide (CO2) with cyclic amines using the stopped-flow technique, Energy Procedia 4, 140–147. [CrossRef]
  • Raynal L., Alix P., Bouillon P.A., Gomez A., le Febvre de Nailly M., Jacquin M., Kittel J., di Lella A., Mougin P., Trapy J. (2011) The DMXTM process: An original solution for lowering the cost of post-combustion carbon capture, Energy Procedia 4, 779–786. [CrossRef]
  • Rinker E.B., Ashour S.S., Sandall O.C. (1996) Kinetics and Modeling of Carbon Dioxide Absorption into Aqueous Solutions of Diethanolamine, Ind. Eng. Chem. Res. 35, 4, 1107–1114. [CrossRef]
  • Sartori G., Savage D.W. (1983) Sterically hindered amines for carbon dioxide removal from gases, Ind. Eng. Chem. Fundam. 22, 2, 239–249. [CrossRef]
  • Scacchi G., Bouchy M., Foucaut J.M., Zahraa O. (1996) Cinétique et catalyse, Technique & documentation, Paris.
  • Soli A.L., Byrne R.H. (2002) CO2 system hydration and dehydration kinetics and the equilibrium CO2/H2CO3 ratio in aqueous NaCl solution, Marine Chem. 78, 2-3, 65–73. [CrossRef]
  • Taft R.W. (1976) Progress in physical organic chemistry, John Whiley & Sons Inc., New York.
  • Ume C.S., Ozturk M.C., Alper E. (2012) Kinetics of CO2 Absorption by a Blended Aqueous Amine Solution, Chem. Eng. Technol. 35, 3, 464–468. [CrossRef]
  • Ume C.S., Alper E. (2012) Reaction kinetics of carbon dioxide with 2-amino-2-hydroxymethyl-1,3-propanediol in aqueous solution obtained from the stopped flow method, Turkish J. Chem. 36, 3, 427–435.
  • van Loo S., van Elk E.P., Versteeg G.F. (2007) The removal of carbon dioxide with activated solutions of methyl-diethanol-amine, J. Petrol. Sci. Eng. 55, 1–2, 135–145. [CrossRef]
  • Versteeg G.F., van Swaaij W.P.M. (1988a) On the Kinetics Between CO2 and Alkanolamines Both in Aqueous and Non-Aqueous Solutions. 1. Primary and Secondary-Amines, Chem. Eng. Sci. 43, 3, 573–585. [CrossRef]
  • Versteeg G.F., van Swaaij W.P.M. (1988b) On the kinetics between CO2 and alkanolamines Both in Aqueous and Non-Aqueous Solutions. 2. Tertiary amines, Chem. Eng. Sci. 43, 3, 587–591. [CrossRef]
  • Wang X., Conway W., Fernandes D., Lawrance G., Burns R., Puxty G., Maeder M. (2011) Kinetics of the Reversible Reaction of CO2(aq) with Ammonia in Aqueous Solution, J. Phys. Chem. A 115, 24, 6405–6412. [CrossRef] [PubMed]
  • Xiang Q., Fang M., Yu H., Maeder M. (2012) Kinetics of the Reversible Reaction of CO2(aq) and HCO3- with Sarcosine Salt in Aqueous Solution, J. Phys. Chem. A 116, 42, 10276–10284. [CrossRef] [PubMed]
  • Yu W.C., Astarita G., Savage D.W. (1985) Kinetics of carbon dioxide absorption in solutions of methyldiethanolamine, Chem. Eng. Sci. 40, 8, 1585–1590. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.