- Aronu U.E., Hoff K.A., Svendsen H.F. (2011) CO2 capture solvent selection by combined absorption-desorption analysis, Chem. Eng. Res. Des. 89, 1197–1203. [CrossRef] [Google Scholar]
- Balaban A.T., Dinculescu A., Elguero J., Faure R. (1985) Carbon-13 NMR studies of primary amines and their corresponding 2,4,6-trimethyl-pyridinium salts, Magn. Reson. Chem. 23, 553–558. [CrossRef] [Google Scholar]
- Bishnoi S., Rochelle G.T. (2002) Absorption of carbon dioxide in aqueous piperazine/methyldiethanolamine, AIChE J. 48, 2788–2799. [Google Scholar]
- Bruder P., Svendsen H.F. (2011) Solvent comparison for post combustion CO2 capture, 1st Post Combustion Capture Conference, 17-19 May, Abu Dhabi, Kingdom of Saudi Arabia. [Google Scholar]
- Derks P.W.J., Dijkstra H.B.S. (2005) Solubility of carbon dioxide in aqueous piperazine solutions, AIChE J. 51, 2311–2327. [CrossRef] [Google Scholar]
- Hartono A., da Silva E.F., Grasdalen H., Svendsen H.F. (2007) Qualitative determination of species in DETA-H2O-CO2 system using 13C NMR spectra, Ind. Eng. Chem. Res. 46, 249–254. [CrossRef] [Google Scholar]
- Hilliard M.D. (2008) A predictive thermodynamic model for an aqueous blends of potassium carbonate, piperazine, and monoethanolamine for carbon dioxide capture from flue gas, PhD Thesis, University of Texas, Austin. [Google Scholar]
- Hu L. (2009) Phase transitional absorption method, United States Patent, 7541001. [Google Scholar]
- Jakobsen J.P., Krane J., Svendsen H.F. (2005) Liquid-phase composition determination in CO2-H2O-alkanolamine system: an NMR study, Ind. Eng. Chem. Res. 44, 9894–9903. [CrossRef] [Google Scholar]
- Jakobsen J.P., da Silva E.F., Krane J., Svendsen H.F. (2008) NMR study and quantum mechanical calculations on the 2-[(2-aminoethyl) amino]- ethianol- H2O- CO2 system, J. Magn. Reson. 191, 304–314. [CrossRef] [PubMed] [Google Scholar]
- Liu J., Wang S., Zhao B., Tong H., Chen C. (2009) Absorption of carbon dioxide in aqueous ammonia, Energy Procedia 1, 933–940. [CrossRef] [Google Scholar]
- Liu J., Wang S., Qi G., Zhao B., Chen C. (2011) Kinetics and mass transfer of carbon dioxide absorption into aqueous ammonia, Energy Procedia 4, 525–532. [CrossRef] [Google Scholar]
- Liu J., Wang S., Zhao B., Chen C. (2012) Study on mass transfer and kinetics of CO2 absorption into aqueous ammonia and piperazine blended solutions, Chem. Eng. Sci. 75, 298–308. [CrossRef] [Google Scholar]
- Pacheco M.A. (1998) Mass transfer, kinetics and rate-based modeling of reactive absorption, PhD Thesis, University of Texas, Austin. [Google Scholar]
- Parker E., Leconte N., Godet T., Belmont P. (2011) Solver-catalyzed furoquinolines synthesis: from nitrogen effects to the use of silver imidazolate polymer as a new and robust silver catalyst, Chem. Commun. 47, 343–345. [CrossRef] [Google Scholar]
- Raynal L., Alix P., Bouillon P.A., Gomez A., de Nailly M.F., Jacquin M., Kittel J., di Lella A., Mougin P., Trapy J. (2011) The DMXTM process: An original solution for lowering the cost of post-combustion carbon capture, Energy Procedia 4, 779–786. [CrossRef] [Google Scholar]
- Rinker E.B., Ashour S.S. (2000) Absorption of carbon dioxide into aqueous blends of diethanolamine and methyldiethanolamine, Ind. Eng. Chem. Res. 39, 4346–4356. [CrossRef] [Google Scholar]
- Rochelle G.T. (2009) Amine scrubbing for CO2 capture, Science 325, 1652–1654. [CrossRef] [PubMed] [Google Scholar]
- Rojey A., Cadours R., Carrette P.L., Boucot P. (2009) Method of deacidizing a gas by means of an absorbent solution with fractionated regeneration through heating, United States Patent. Pub. No.: US 2009/0199709 A1. [Google Scholar]
- Suda T., Iwaki T., Mimura T. (1996) Facile determination of dissolved species in CO2-amine-H2O system by NMR spectroscopy, Chem. Lett. 9, 777–778. [CrossRef] [Google Scholar]
- Svendsen H.F., Hessen E.T., Mejdell T. (2011) Carbon dioxide capture by absorption, challenges and possibilities, Chem. Eng. J. 171, 718–724. [CrossRef] [Google Scholar]
- Tan Y.H. (2010) Study of CO2-absorption into thermomorphic lipophilic amine solvents, PhD Thesis, University of Dortmund, Germany. [Google Scholar]
- Xu Z., Wang S., Liu J., Chen C. (2012a) Solvents with low critical solution temperature for CO2 capture, Energy Procedia 23, 64–71. [CrossRef] [Google Scholar]
- Xu Z., Wang S., Zhao B., Chen C. (2012b) Study on potential biphasic solvents: absorption capacity, CO2 loading and reaction rate, 11th International Conference on Greenhouse Gas Technologies, 18-22 Nov., Kyoto, Japan. [Google Scholar]
- Xu Z., Wang S., Chen C. (2013a) Experimental study of CO2 absorption by biphasic solvents, J. Tsinghua University (Science and Technology) 53, 3, 336–341. [Google Scholar]
- Xu Z.C., Wang S.J., Chen C.H. (2013b) Experimental Study of CO2 absorption by MAPA, DEEA, BDA and BDA/DEEA mixtures, J. Combust. Sci. Technol. 19, 2, 103–108. [Google Scholar]
- Xu Z., Wang S., Chen C. (2013c) CO2 absorption by biphasic solvents: mixtures of 1,4-Butanediamine and 2-(Diethylamino)-ethanol, Int. J. Greenhouse Gas Control 16, 107–115. [CrossRef] [Google Scholar]
- Zhang J., Agar D.W., Zhang X., Geuzebroek F. (2011) CO2 absorption in biphasic solvents with enhanced low temperature solvent regeneration, Energy Procedia 4, 67–74. [CrossRef] [Google Scholar]
- Zhang X. (2007) Studies on multiphase CO2 capture system, PhD Thesis, University of Dortmund, Germany. [Google Scholar]
Open Access
Numéro |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Numéro 5, September-October 2014
Dossier: Post Combustion CO2 Capture
|
|
---|---|---|
Page(s) | 851 - 864 | |
DOI | https://doi.org/10.2516/ogst/2013155 | |
Publié en ligne | 4 décembre 2013 |
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.