Dossier: Geosciences Numerical Methods
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 4, July-August 2014
Dossier: Geosciences Numerical Methods
Page(s) 619 - 632
DOI https://doi.org/10.2516/ogst/2013195
Published online 20 March 2014
  • Saltelli A., Sobol I. (1995) About the use of rank transformation in sensitivity of model output, Reliability Engineering and System Safety 50, 225–239. [CrossRef] [Google Scholar]
  • Saltelli A., Sobol I. (1999) A quantitative, model independent method for global sensitivity analysis of model output, Reliability Engineering and System Safety 41, 1, 39–56. [Google Scholar]
  • Saltelli A., Chan K., Scott M. (2000) Sensitivity analysis, Wiley. [Google Scholar]
  • Sobol I.M. (1993) Sensitivity estimates for nonlinear mathematical models, Mathematical Modelling and Computational Experiments 1, 407–414. [Google Scholar]
  • Blatman G., Sudret B. (2010) Efficient computation of global sensitivity indices using sparse polynomial chaos expansions, Reliability Engineering and System Safety 95, 1216–1229. [CrossRef] [Google Scholar]
  • Busby D., Farmer C.L., Iske A. (2007) Hierarchical nonlinear approximation for experimental design and statistical data fitting, SIAM Journal on Scientific Computing 29, 1, 49–69. [CrossRef] [MathSciNet] [Google Scholar]
  • Marrel A., Iooss B., Van Dorpe F., Volkova E. (2008) An efficient methodology for modeling complex computer codes with gaussian processes, Computational Statistics and Data Analysis 52, 4731–4744. [CrossRef] [Google Scholar]
  • Sacks J., Welch W.J., Mitchell T.J., Wynn H.P. (1989) Design and analysis of computer experiments, Statistical Science 4, 409–435. [CrossRef] [MathSciNet] [Google Scholar]
  • Santner T.J., Williams B.J., Notz W.I. (2003) The design and analysis of computer experiments, Springer. [CrossRef] [Google Scholar]
  • Storlie C.B., Helton J.C. (2008) Multiple predictor smoothing methods for sensitivity analysis: Description of techniques, Reliability Engineering and System Safety 93, 28–54. [CrossRef] [Google Scholar]
  • Storlie C.B., Helton J.C. (2008) Multiple predictor smoothing methods for sensitivity analysis: examples results, Reliability Engineering and System Safety 93, 57–77. [Google Scholar]
  • Storlie C.B., Swiler L.P., Helton J.C., Sallaberry C.J. (2009) Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models, Reliability Engineering and Systems Safety 94, 11, 1735–1763. [CrossRef] [Google Scholar]
  • Touzani S., Busby D. (2013) Smoothing spline analysis of variance approach for global sensitivity analysis of computer codes, Reliability Engineering and System Safety 112, 67–81. [CrossRef] [Google Scholar]
  • Morris M.D. (1991) Factorial sampling plans for preliminary computational experiments, Technometrics 33, 161–174. [CrossRef] [Google Scholar]
  • Sobol I.M., Kucherenko S. (2009) Derivative based global sensitivity measures and the link with global sensitivity indices, Mathematics and Computers in Simulation 79, 3009–3017. [CrossRef] [Google Scholar]
  • Sobol I.M., Kucherenko S. (2010) A new derivative based importance criterion for groups of variables and its link with global sensitivity indices, Computer Physics Communications 181, 7, 1212–1217. [CrossRef] [Google Scholar]
  • Campolongo F., Cariboni J., Saltelli A. (2007) An effective screening design for sensitivity analysis of large models, Environmental Modelling and Software 22, 1509–1518. [CrossRef] [Google Scholar]
  • Sobol I., Gresham A. (1995) On an alternative global sensitivity estimators, Proceedings of SAMO 1995, pp. 40–42. [Google Scholar]
  • Kucherenko S., Rodriguez-Fernandez M., Pantelides C., Shah N. (2009) Monte carlo evaluation of derivative-based global sensitivity measures, Reliability Engineering and System Safety 94, 1135–1148. [CrossRef] [Google Scholar]
  • Lamboni M., Iooss B., Popelin A.-L., Gamboa F. (2013) Derivative-based global sensitivity measures: General links with Sobol’ indices and numerical tests, Mathematics and Computers in Simulation 87, 45–54. [CrossRef] [Google Scholar]
  • Sobol I.M. (1976) Uniformly distributed sequences with an additional uniform property, USSR Computational Mathematics and Mathematical Physics 16, 5, 236–242. [CrossRef] [Google Scholar]
  • Sobol I.M., Kucherenko S. (1998) On quasi-Monte Carlo integrations, Mathematics and Computers in Simulation 47, 103–112. [CrossRef] [Google Scholar]
  • McKay M.D., Beckman R.J., Conover W.J. (1979) Conover. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics 21, 239–245. [Google Scholar]
  • Floris F.J.T., Bush M.D., Cuypers M., Roggero F., Syversveen A.R. (2001) Methods for quantifying the uncertainty of production forecasts-a comparative study, Petroleum Geoscience 7, S87–S96. [CrossRef] [Google Scholar]
  • PUNQS (1996) Production forecasting with uncertainty quantification, Website, URL http://www.fault-analysis-group. ucd.ie/Projects/PUNQ.html. [Google Scholar]
  • PumaFlow (2011) IFP Energies nouvelles reservoir simulator, URL http://www.openflowsuite.com/software/pumaflow. [Google Scholar]
  • Anterion F., Eymard R., Karcher B. (1989) Use of parameter gradients for reservoir history matching, SPE Symposium on Reservoir Simulation Houston, Tx, 6-8 Feb., SPE 18433. [Google Scholar]
  • Killough J.E., Sharma Y., Dupuy A., Bissell R., Wallis J. (1995) A multiple right hand side iterative solver for history matching, SPE Symposium on Reservoir Simulation, San Antonio, Tx, 12-15 Feb., SPE 29119. [Google Scholar]
  • CougarFlow (2011) IFP Energies nouvelles uncertainty analysis software, URL http://www.openflowsuite.com/software/ cougarflow. [Google Scholar]
  • Eydinov D., Aanonsen S., Haukas J., Aavatsmark I. (2008) A method for automatic history matching of a compositional reservoir simulator with multipoint flux approximation, Computational Geosciences 12, 2, 209–225. [CrossRef] [MathSciNet] [Google Scholar]
  • Plessix R.-E. (2006) A review of the adjoint-state method for computing the gradient of a functional with geophysical applications, Geophysical Journal International 167, 2, 495–503. [CrossRef] [Google Scholar]
  • Rama Rao B., Mishra S. (1996) Adjoint sensitivity analysis for mathematical models of coupled nonlinear physical processes, ModelCARE 96, International Conference on Calibration and Reliability in Groundwater Modelling, Golden, 24-26 Sept. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.