Dossier: Geosciences Numerical Methods
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 4, July-August 2014
Dossier: Geosciences Numerical Methods
Page(s) 603 - 617
DOI https://doi.org/10.2516/ogst/2013166
Published online 21 January 2014
  • Rai K., Russell T.J., Larry W.L., Mojdeh D. (2009) Oil recovery predictions for surfactant polymer flooding, SPE Annual Technical Conference and Exhibition, SPE Paper 124001 [CrossRef] [Google Scholar]
  • Mattax C.C., Dalton R.L. (1990) Reservoir simulation, Vol. 13, SPE Monograph. [Google Scholar]
  • AlSofi A.M., Blunt M.J. (2011) Polymer flooding design and optimization under uncertainty, SPE Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia, SPE Paper 145110. [Google Scholar]
  • Gharbi R.B. (2001) Optimization of EOR processes using knowledge-based system: case studies, Petroleum Science and Technology 19, 7-8, 797–823. [CrossRef] [Google Scholar]
  • Horowitz B., Guimaraes L.J., Dantas V., Afonso S.M. (2010) A concurrent efficient global optimization algorithm applied to polymer injection strategies, Journal Petroleum Science and Engineering 71, 195–204. [CrossRef] [Google Scholar]
  • Zerpa L.E., Queipo N.V., Pintos S., del Zulia U., Tillero E., Alter D. (2007) An efficient response surface approach for the optimization of ASP flooding processes: ASP pilot project LL-03 reservoir, SPE Latin America and Caribbean Petroleum Engineering Conference, Buenos Aires, Argentina, April. [Google Scholar]
  • Feraille M., Marrel A. (2012) Prediction under uncertainty on a mature field, Oil Gas Science Technology 67, 2, 193–206. [CrossRef] [EDP Sciences] [Google Scholar]
  • Marrel A., Iooss B., Van Dorpe F., Volkova E. (2008) An efficient methodology for modeling complex computer codes with Gaussian processes, Computational Statistic and Data Analysis 52, 10, 4731–4744. [CrossRef] [Google Scholar]
  • Scheidt C., Zabalza-Mezghani I., Feraille M., Collombier D. (2007) Toward a reliable quantification of uncertainty on production forecasts: adaptive experimental designs, Oil Gas Science Technology 62, 207–224. [CrossRef] [EDP Sciences] [Google Scholar]
  • Marrel A., Perot N. (2012) Development of a surrogate model and sensitivity analysis for an atmospheric dispersion computer code, PSAM 11 and ESREL 2012 Conference, Helsinki, Finland, June. [Google Scholar]
  • PumaFlowTM (2013) Reference manual, release v600, Beicip-Franlab. [Google Scholar]
  • PumaFlowTM (2013) Technical manual, release v600, Beicip-Franlab. [Google Scholar]
  • Pusch G., Müller Th. (1990) Modeling of multiphase flow with respect to low interfacial tension by pseudo-two-phase relative permeability functions, Revue de l’Institut Français du Pétrole 45, 1, 63–70. [Google Scholar]
  • Durrande N., Ginsbourger D., Roustand O., Carraro L. (2013) ANOVA kernels and rkhs of zero mean functions for model-based sensitivity analysis, Journal of Multivariate Analysis 115, 57–67. [CrossRef] [Google Scholar]
  • Sobol I.M. (1990) On sensitivity estimation for nonlinear mathematical models, Math. Comput. Modelling 2, 1, 112–118. [Google Scholar]
  • Saltelli A., Ratto M., Andres T., Campolongo F., Cariboni J., Gatelli D., Saisana M., Tarantola S. (2008) Global sensitivity analysis, Wiley. [Google Scholar]
  • Sacks J., Welch W.J., Mitchell T.J., Wynn H.P. (1989) Design and analysis of computer experiments, Statist. Sci. 4, 4, 409–423. [CrossRef] [MathSciNet] [Google Scholar]
  • Fang K.T., Li R., Sudjianto A. (2006) Design and modeling for computer experiments, Chapman & Hall/CRC. [Google Scholar]
  • McKay M.D., Beckman R.J., Conover W.J. (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics 21, 2, 239–245. [CrossRef] [MathSciNet] [Google Scholar]
  • Ghanem R., Spanos P. (1991) Stochastic finite elements: a spectral approach, Springer-Verlag. [CrossRef] [Google Scholar]
  • Mara T. (2009) Extension of the RBD-FAST method to the computation of global sensitivity indices, Reliability Engineering and System Safety 94, 8, 1274–1281. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.