Dossier: Geosciences Numerical Methods
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 4, July-August 2014
Dossier: Geosciences Numerical Methods
Page(s) 731 - 752
DOI https://doi.org/10.2516/ogst/2013206
Published online 24 July 2014
  • Toselli A., Widlund O. (2004) Domain Decomposition Methods - Algorithms and Theory, Vol. 34 Springer Series in Computational Mathematics, Springer.
  • Nataf F., Xiang H., Dolean V., Spillane N. (2011) A coarse space construction based on local Dirichlet to Neumann maps, SIAM J. Sci Comput. 33, 4, 1623–1642. [CrossRef]
  • Schwarz H.A. (1870) Über einen Grenzübergang durch alternierendes Verfahren, Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 15, 272–286.
  • Cai X.-C., Sarkis M. (1999) A restricted additive Schwarz preconditioner for general sparse linear systems, SIAM Journal on Scientific Computing 21, 239–247.
  • Balay S., Gropp W.D., McInnes L.C., Smith B.F. (2001) PETSc users manual, Technical Report ANL95/11 -Revision 2.1.1, Argonne National Laboratory.
  • Saad Y. (1996) Iterative Methods for Sparse Linear Systems, PWS Publishing Company.
  • Cai X.-C., Farhat C., Sarkis M. (1998) A minimum overlap restricted additive Schwarz preconditioner and applications to 3D flow simulations, Contemporary Mathematics 218, 479–485. [CrossRef]
  • Nataf F., Xiang H., Dolean V. (2010) A two level domain decomposition preconditioner based on local Dirichlet-to-Neumann maps, C. R. Mathématique 348, 21–22, 1163–1167. [CrossRef]
  • Japhet C., Nataf F., Roux F.-X. (1998) Extension of a coarse grid preconditioner to non-symmetric problems, in Domain decomposition methods 10, Mandel J., Farhal C., Cai X.-C. (eds.), (Boulder, CO, 1997), Contemp. Math, 218, 279–286. doi: 10.1090/conm/218/3019. [CrossRef]
  • Nabben R., Vuik C. (2004) A comparison of deflation and coarse grid correction applied to porous media flow, SIAM Journal on Numerical Analysis 42, 1631–1647. [CrossRef]
  • Nicolaides R.A. (1987) Deflation of conjugate gradients with applications to boundary value problems, SIAM J. Numer. Anal. 24, 2, 355–365. [NASA ADS] [CrossRef] [MathSciNet]
  • Escobar J.F. (1997) The geometry of the first non-zero Stekloff eigenvalue, J. Funct. Anal. 150, 544–556. [CrossRef] [MathSciNet]
  • Dolean V., Nataf F., Scheichl R., Spillane N. (2012) Analysis of a two-level Schwarz method with coarse spaces based on local Dirichlet–to–Neumann maps, Comp. Meth. Appl. Math 12, 4. URL http://hal.archives-ouvertes.fr/hal-00586246/.
  • Efendiev Y., Galvis J., Vassilevski P.S. (2011) Spectral element agglomerate algebraic multigrid methods for elliptic problems with high contrast coefficients, in Domain Decomposition Methods in Science and Engineering XIX, Huang Y., Kornhuber R., Widlund O., Xu J. (eds.), Vol. 78 Lecture Notes in Computational Science and Engineering, pp. 407–414, Springer, Berlin. [CrossRef]
  • Efendiev Y., Galvis J., Wu X.-H. (2011) Multiscale finite element methods for high-contrast problems using local spectral basis functions, Journal of Computational Physics 230, 937–955. [CrossRef]
  • Galvis J., Efendiev Y. (2010) Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model. Simul. 8, 4, 1461–1483. [CrossRef]
  • Galvis J., Efendiev Y. (2010) Domain decomposition preconditioners for multiscale flows in high contrast media: Reduced dimension coarse spaces, Multiscale Model. Simul. 8, 5, 1621–1644. [CrossRef]
  • Hecht F. (2010) FreeFem++. Numerical Mathematics and Scientific Computation, Laboratoire J.L. Lions, Université Pierre et Marie Curie, http://www.freefem.org/ ff++/, 3.7 edition.
  • Karypis G., Kumar V. (1998) METIS: A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices, Technical report, Department of Computer Science, University of Minnesota. http://glaros.dtc.umn.edu/gkhome/views/metis.
  • Graham I.G., Scheichl R. (2007) Robust domain decomposition algorithms for multiscale PDEs, Numerical Methods for Partial Differential Equations 23, 4, 859–878. [CrossRef]
  • Spillane N., Dolean V., Hauret P., Nataf F., Pechstein C., Scheichl R. (2011) A robust two level domain decomposition preconditioner for systems of PDEs, Comptes Rendus Mathématique 349, 23–24, 1255–1259. [CrossRef]
  • Efendiev Y., Hou T.Y. (2009) Multiscale finite element methods, volume 4 of Surveys and Tutorials in the Applied Mathematical Sciences, Springer, New York. ISBN 978-0-387-09495-3. Theory and applications.
  • Hesse M.A., Mallison Bradley.T., Tchelepi Hamdi.A. (2008) Compact multiscale finite volume method for heterogeneous anisotropic elliptic equations, Multiscale Model. Simul. 7, 2, 934–962. ISSN 1540-3459. doi: 10.1137/070705015. [CrossRef]
  • Nordbotten J.M., Bjørstad P.E. (2008) On the relationship between the multiscale finite-volume method and domain decomposition preconditioners, Comput. Geosci. 12, 3, 367–376. ISSN 1420-0597. doi: 10.1007/s10596-007-9066-6. [CrossRef]
  • Zhou H., Tchelepi H.A. (2011) Two-stage algebraic multiscale linear solver for highly heterogeneous reservoir models, SPE Reservoir Simulation Symposium, The Woodlands, Texas, USA, 21-22 Feb, SPE paper 141473_MS.
  • Chen Y., Durlofsky L.J., Gerritsen M., Wen X.H. (2003) A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations, Advances in Water Resources 26, 10, 1041–1060. ISSN 0309-1708. doi: 10.1016/S0309-1708(03)00101-5. [CrossRef]
  • Chen Yuguang, Durlofsky Louis.J. (2006) Efficient incorporation of global effects in upscaled models of two-phase flow and transport in heterogeneous formations, Multiscale Model. Simul. 5, 2, 445–475. ISSN 1540-3459. doi: 10.1137/060650404. [CrossRef]
  • Durlofsky L.J., Efendiev Y., Ginting V. (2007) An adaptive local-global multi-scale finite volume element method for two-phase flow simulations, Advances in Water Resources 30, 3, 576–588. ISSN 0309-1708. doi: 10.1016/j.advwatres.2006.04.002. [CrossRef]
  • Vuik C., Segal A., Meijerink J.A. (1999) An effcient preconditioned cg method for the solution of a class of layered problems with extreme contrasts in the coefficients, J. Comput. Phys. 152, 385–403. [CrossRef]
  • Aarnes J., Hou T.Y. (2002) Multiscale domain decomposition methods for elliptic problems with high aspect ratios, Acta Math. Appl. Sin. Engl. Ser. 18, 1, 63–76. ISSN 0168-9673. doi: 10.1007/s102550200004. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.