Dossier: Advances in Signal Processing and Image Analysis for Physico-Chemical, Analytical Chemistry and Chemical Sensing
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 2, March-April 2014
Dossier: Advances in Signal Processing and Image Analysis for Physico-Chemical, Analytical Chemistry and Chemical Sensing
Page(s) 261 - 277
Published online 15 November 2013
  • Guinier A. (1994) X-Ray Diffraction: In crystals, imperfect crystals, and amorphous bodies, Dover Books on Physics, ISBN: 0-486-68011-8. [Google Scholar]
  • Warren B.E. (1991) X-ray Diffraction, Dover Publications Inc., ISBN: 0-486-66317-5. [Google Scholar]
  • Pietsch U., Holy V., Baumbach T. (2004) High resolution X-ray scattering, from thin films to lateral nanostructures, Springer, ISBN: 978-0-387-40092-1. [Google Scholar]
  • Verploegen E., Mondal R., Bettinger C. J., Sok S., Toney M.F., Bao Z. (2010) Effects of thermal annealing upon the morphology of polymer-fullerene blends, Adv. Funct. Mater. 20, 3519-3529. [CrossRef] [Google Scholar]
  • Mallat S. (2008) A wavelet tour of signal processing The sparse way, 3rd ed., Academic Press. [Google Scholar]
  • Starck J.-L., Murtagh F., Fadili J. (2010) Sparse image and signal processing: Wavelets, curvelets, morphological diversity, Cambridge University Press, Cambridge, GB, ISBN-10: 0521119138; 336-pp. monograph. [Google Scholar]
  • Murray J., Kreutz-Delgado K. (2004) Sparse image coding using learned overcomplete dictionaries, 14th IEEE 4478 Workshop on Machine Learning for Signal Processing, Sao Luis, 29 Sept.–1 Oct. [Google Scholar]
  • Elad M., Aharon M. (2006) Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. Image Process. 15, 12, 3736-3745. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Starck J.-L., Nguyen M.K., Murtagh F. (2003) Wavelets and curvelets for image deconvolution: a combined approach, Signal Process. 83, 2279-2283. [CrossRef] [Google Scholar]
  • Starck J.-L., Donoho D.L., Candès E.J. (2001) Very high quality image restoration by combining wavelets and curvelets, Proc. SPIE 4478, Wavelets: Application in Signal and Image Processing IX, Laine A.F., Unser M.A., Aldroubi A. (eds), 5 Dec., pp. 9-19. [Google Scholar]
  • Haykin S. (2001) Unsupervised adaptive filtering, Volume 1: Blind source separation, John Wiley and Sons, New York. [Google Scholar]
  • Hyvarinen A., Karhunen J., Oja E. (2001) Independent component analysis, John Wiley and Sons, New York. [Google Scholar]
  • Daubechies I. (1992) Ten lectures on wavelets, SIAM, Philadelphia, PA. [Google Scholar]
  • Kingsbury N. (1998) The dual-tree complex wavelet transform: A new technique for shift invariance and directional filters, 8th IEEE DSP Workshop, Utah, 9-12 Aug. [Google Scholar]
  • Starck J.-L., Fadili J., Murtagh F. (2007) The undecimated wavelet decomposition and its reconstruction, IEEE Trans. Image Process. 16, 2, 297-309. [Google Scholar]
  • Candès E., Donoho D. (2002) Recovering edges in ill-posed inverse problems: Optimality of curvelet frames, Ann. Statist. 30, 3, 784-842. [CrossRef] [MathSciNet] [Google Scholar]
  • Do M., Vetterli M. (2003) Contourlets, beyond wavelets, Welland G.V. (ed.), Academic, New York. [Google Scholar]
  • Mallat S., LePennec E. (2005) Sparse geometric image representation with bandelets, IEEE Trans. Image Process. 14, 4, 423-438. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Vese L., Osher S. (2003) Modeling textures with total variation minimization and oscillating patterns in image processing, J. Sci. Comput., 19, 1-3, 553-572. [CrossRef] [MathSciNet] [Google Scholar]
  • Aujol J.-F., Aubert G., Blanc-Féraud L., Chambolle A. (2005) Image decomposition into a bounded variation component and an oscillating component, J. Math. Imaging Vision 22, 71-88. [Google Scholar]
  • Aujol J.-F., Gilboa G., Chan T., Osher S. (2006) Structure-texture image decomposition - modeling, algorithms and parameter selection, Int. J. Comput. Vis. 67, 1, 111-136. [Google Scholar]
  • Maurel P., Aujol J.-F., Peyré G. (2011) Locally parallel texture modeling, SIAM J. Imaging Sci. 4, 1, 413-447. [CrossRef] [MathSciNet] [Google Scholar]
  • Briceño-Arias L., Combettes P., Pesquet J.-C., Pustelnik N. (2011) Proximal algorithms for multicomponent image recovery problems, J. Math. Imaging Vis. 41, 1, 3-22. [CrossRef] [Google Scholar]
  • Kreutz-Delgado K., Rao B. (1999) Sparse basis selection, ICA and majorization: towards a unified perspective, IEEE International Conference Acoustics, Speech and Signal Processing, Phoenix, AZ, USA, 15-19 March. [Google Scholar]
  • Zibulevsky M., Pearlmutter B. (2001) Blind source separation by sparse decomposition in a signal dictionary, Neural Comput. 13, 4, 863-882. [Google Scholar]
  • Starck J.-L., Elad M., Donoho D. (2004) Redundant multiscale transforms and their application for morphological component analysis, Adv. Imaging Electron Phys. 132, 287-348. [Google Scholar]
  • Starck J.-L., Elad M., Donoho D. (2005) Image decomposition via the combination of sparse representations and a variational approach, IEEE Trans. Image Process. 14, 10, 1570-1582. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Dubois S., Péteri R., Ménard M. (2010) Decomposition of dynamic textures using morphological component analysis: A new adaptive strategy, Proc. International Conference on Pattern Recognition, Istanbul, Turkey, 23-26 Aug. [Google Scholar]
  • Abrial P., Moudden Y., Starck J.-L., Afeyan B., Bobin J., Fadili M.J., Nguyen M. (2007) Morphological component analysis and inpainting on the sphere: Application in physics and astrophysics, J. Fourier Anal. Appl. (JFAA) 13, 6, 729-748, doi: 10.1007/s00041-006-6908-x. [Google Scholar]
  • Gao X., Wang Y., Li X., Tao D. (2010) On combining morphological component analysis and concentric morphology model for mammographic mass detection, IEEE Trans. Inf. Technol. Biomed. 14, 2, 266-273. [CrossRef] [PubMed] [Google Scholar]
  • Gaudes C.C., Van de Ville D., Petridou N., Lazeyras F., Gowland P. (2011) Paradigm-free mapping with morphological component analysis: Getting most out of fMRI data, Wavelets and Sparsity XIV, Papadakis M., Van de Ville D., Goyal V.K. (eds.) Proc SPIE 8138, San Diego, CA, USA, doi:10.1117/12.893920. [Google Scholar]
  • Elad M., Starck J.-L., Querre P., Donoho D. (2005) Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA), Appl. Comput. Harmonic Anal. 19, 3, 340-358. [CrossRef] [MathSciNet] [Google Scholar]
  • Natarajan B. (1995) Sparse approximate solutions to linear systems, SIAM J. Comput. 24, 227-234. [CrossRef] [MathSciNet] [Google Scholar]
  • Gribonval R., Nielsen M. (2003) Sparse representations in unions of bases, IEEE Trans. Inf. Theory 49, 12, 3320-3325. [Google Scholar]
  • Donoho D. (2004) For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution, Technical Report, Stanford University, Available at:\2004/l1l0EquivCorrected.pdf. [Google Scholar]
  • Mallat S., Zhang Z. (1993) Matching pursuit with time-frequency dictionaries, IEEE Trans. Signal Process. 41, 12, 3397-3415. [Google Scholar]
  • Chen S., Donoho D., Saunders M. (1998) Atomic decomposition by basis pursuit, SIAM J. Sci. Comput. 20, 33-61. [Google Scholar]
  • Candès E.J., Donoho D.L. (1999) Ridgelets: the key to high dimensional intermittency?, Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 357, 2495-2509. [Google Scholar]
  • Starck J.-L., Candès E.J., Donoho D.L. (2002) The curvelet transform for image denoising, IEEE Trans. Image Process. 11, 6, 131-141. [Google Scholar]
  • Gabriel A., Dauvergne F. (1982) The localisation method used at EMBL, Nuclear Instrum. Methods Phys. Res. 201, 1, 223-224. [CrossRef] [Google Scholar]
  • Bruce A.G., Sardy S., Tseng P. (1998) Block coordinate relaxation methods for nonparametric signal denoising, Proc. SPIE 3391, Wavelot Application V, 75, 26 March, doi: 10.1117/12.304915, The International Society for Optical Engineering, pp. 75-86. [Google Scholar]
  • Bobin J., Moudden Y., Fadili M.J., Starck J.-L. (2009) Morphological diversity and sparsity for multichannel data restoration, J. Math. Imaging. Vis. 33, 2, 149-168. [CrossRef] [Google Scholar]
  • Elad M. (2006) Why simple shrinkage is still relevant for redundant representations?, IEEE Trans. Inf. Theory 52, 12, 5559-5569. [CrossRef] [Google Scholar]
  • Donoho D., Kutyniok G. (2010) Microlocal analysis of the geometric separation problem, Technical Report, No. 2010-01, Dept. of Statistics, Stanford University. [Google Scholar]
  • Roth S., Black M.J. (2005) Fields of Experts: a framework for learning image priors, Proc. of IEEE Computer Vision and Pattern Recognition, Providence, RI, USA, 20-25 June. [Google Scholar]
  • Peiying C., Yuandi W. (2009) A new fourth-order equation model for image inpainting, Proc. 6th International Conference on Fuzzy Systems and Knowledge Discovery, Shanghai, China, 14-16 Aug. [Google Scholar]
  • Kutyniok G., Lim W. (2011) Compactly supported shearlets are optimally sparse, J. Approx. Theory 163, 1564-1589. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.