Dossier: Advances in Signal Processing and Image Analysis for Physico-Chemical, Analytical Chemistry and Chemical Sensing
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 2, March-April 2014
Dossier: Advances in Signal Processing and Image Analysis for Physico-Chemical, Analytical Chemistry and Chemical Sensing
Page(s) 261 - 277
Published online 15 November 2013
  • Guinier A. (1994) X-Ray Diffraction: In crystals, imperfect crystals, and amorphous bodies, Dover Books on Physics, ISBN: 0-486-68011-8.
  • Warren B.E. (1991) X-ray Diffraction, Dover Publications Inc., ISBN: 0-486-66317-5.
  • Pietsch U., Holy V., Baumbach T. (2004) High resolution X-ray scattering, from thin films to lateral nanostructures, Springer, ISBN: 978-0-387-40092-1.
  • Verploegen E., Mondal R., Bettinger C. J., Sok S., Toney M.F., Bao Z. (2010) Effects of thermal annealing upon the morphology of polymer-fullerene blends, Adv. Funct. Mater. 20, 3519-3529. [CrossRef]
  • Mallat S. (2008) A wavelet tour of signal processing The sparse way, 3rd ed., Academic Press.
  • Starck J.-L., Murtagh F., Fadili J. (2010) Sparse image and signal processing: Wavelets, curvelets, morphological diversity, Cambridge University Press, Cambridge, GB, ISBN-10: 0521119138; 336-pp. monograph.
  • Murray J., Kreutz-Delgado K. (2004) Sparse image coding using learned overcomplete dictionaries, 14th IEEE 4478 Workshop on Machine Learning for Signal Processing, Sao Luis, 29 Sept.–1 Oct.
  • Elad M., Aharon M. (2006) Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. Image Process. 15, 12, 3736-3745. [CrossRef] [MathSciNet] [PubMed]
  • Starck J.-L., Nguyen M.K., Murtagh F. (2003) Wavelets and curvelets for image deconvolution: a combined approach, Signal Process. 83, 2279-2283. [CrossRef]
  • Starck J.-L., Donoho D.L., Candès E.J. (2001) Very high quality image restoration by combining wavelets and curvelets, Proc. SPIE 4478, Wavelets: Application in Signal and Image Processing IX, Laine A.F., Unser M.A., Aldroubi A. (eds), 5 Dec., pp. 9-19.
  • Haykin S. (2001) Unsupervised adaptive filtering, Volume 1: Blind source separation, John Wiley and Sons, New York.
  • Hyvarinen A., Karhunen J., Oja E. (2001) Independent component analysis, John Wiley and Sons, New York.
  • Daubechies I. (1992) Ten lectures on wavelets, SIAM, Philadelphia, PA.
  • Kingsbury N. (1998) The dual-tree complex wavelet transform: A new technique for shift invariance and directional filters, 8th IEEE DSP Workshop, Utah, 9-12 Aug.
  • Starck J.-L., Fadili J., Murtagh F. (2007) The undecimated wavelet decomposition and its reconstruction, IEEE Trans. Image Process. 16, 2, 297-309. [NASA ADS] [CrossRef] [MathSciNet] [PubMed]
  • Candès E., Donoho D. (2002) Recovering edges in ill-posed inverse problems: Optimality of curvelet frames, Ann. Statist. 30, 3, 784-842. [CrossRef] [MathSciNet]
  • Do M., Vetterli M. (2003) Contourlets, beyond wavelets, Welland G.V. (ed.), Academic, New York.
  • Mallat S., LePennec E. (2005) Sparse geometric image representation with bandelets, IEEE Trans. Image Process. 14, 4, 423-438. [CrossRef] [MathSciNet] [PubMed]
  • Vese L., Osher S. (2003) Modeling textures with total variation minimization and oscillating patterns in image processing, J. Sci. Comput., 19, 1-3, 553-572. [CrossRef] [MathSciNet]
  • Aujol J.-F., Aubert G., Blanc-Féraud L., Chambolle A. (2005) Image decomposition into a bounded variation component and an oscillating component, J. Math. Imaging Vision 22, 71-88. [CrossRef] [MathSciNet]
  • Aujol J.-F., Gilboa G., Chan T., Osher S. (2006) Structure-texture image decomposition - modeling, algorithms and parameter selection, Int. J. Comput. Vis. 67, 1, 111-136. [CrossRef]
  • Maurel P., Aujol J.-F., Peyré G. (2011) Locally parallel texture modeling, SIAM J. Imaging Sci. 4, 1, 413-447. [CrossRef] [MathSciNet]
  • Briceño-Arias L., Combettes P., Pesquet J.-C., Pustelnik N. (2011) Proximal algorithms for multicomponent image recovery problems, J. Math. Imaging Vis. 41, 1, 3-22. [CrossRef]
  • Kreutz-Delgado K., Rao B. (1999) Sparse basis selection, ICA and majorization: towards a unified perspective, IEEE International Conference Acoustics, Speech and Signal Processing, Phoenix, AZ, USA, 15-19 March.
  • Zibulevsky M., Pearlmutter B. (2001) Blind source separation by sparse decomposition in a signal dictionary, Neural Comput. 13, 4, 863-882. [CrossRef] [PubMed]
  • Starck J.-L., Elad M., Donoho D. (2004) Redundant multiscale transforms and their application for morphological component analysis, Adv. Imaging Electron Phys. 132, 287-348. [CrossRef]
  • Starck J.-L., Elad M., Donoho D. (2005) Image decomposition via the combination of sparse representations and a variational approach, IEEE Trans. Image Process. 14, 10, 1570-1582. [NASA ADS] [CrossRef] [MathSciNet] [PubMed]
  • Dubois S., Péteri R., Ménard M. (2010) Decomposition of dynamic textures using morphological component analysis: A new adaptive strategy, Proc. International Conference on Pattern Recognition, Istanbul, Turkey, 23-26 Aug.
  • Abrial P., Moudden Y., Starck J.-L., Afeyan B., Bobin J., Fadili M.J., Nguyen M. (2007) Morphological component analysis and inpainting on the sphere: Application in physics and astrophysics, J. Fourier Anal. Appl. (JFAA) 13, 6, 729-748, doi: 10.1007/s00041-006-6908-x. [CrossRef]
  • Gao X., Wang Y., Li X., Tao D. (2010) On combining morphological component analysis and concentric morphology model for mammographic mass detection, IEEE Trans. Inf. Technol. Biomed. 14, 2, 266-273. [CrossRef] [PubMed]
  • Gaudes C.C., Van de Ville D., Petridou N., Lazeyras F., Gowland P. (2011) Paradigm-free mapping with morphological component analysis: Getting most out of fMRI data, Wavelets and Sparsity XIV, Papadakis M., Van de Ville D., Goyal V.K. (eds.) Proc SPIE 8138, San Diego, CA, USA, doi:10.1117/12.893920.
  • Elad M., Starck J.-L., Querre P., Donoho D. (2005) Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA), Appl. Comput. Harmonic Anal. 19, 3, 340-358. [CrossRef] [MathSciNet]
  • Natarajan B. (1995) Sparse approximate solutions to linear systems, SIAM J. Comput. 24, 227-234. [CrossRef] [MathSciNet]
  • Gribonval R., Nielsen M. (2003) Sparse representations in unions of bases, IEEE Trans. Inf. Theory 49, 12, 3320-3325. [CrossRef]
  • Donoho D. (2004) For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution, Technical Report, Stanford University, Available at:\2004/l1l0EquivCorrected.pdf.
  • Mallat S., Zhang Z. (1993) Matching pursuit with time-frequency dictionaries, IEEE Trans. Signal Process. 41, 12, 3397-3415. [NASA ADS] [CrossRef]
  • Chen S., Donoho D., Saunders M. (1998) Atomic decomposition by basis pursuit, SIAM J. Sci. Comput. 20, 33-61. [CrossRef] [MathSciNet]
  • Candès E.J., Donoho D.L. (1999) Ridgelets: the key to high dimensional intermittency?, Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 357, 2495-2509. [NASA ADS] [CrossRef] [MathSciNet]
  • Starck J.-L., Candès E.J., Donoho D.L. (2002) The curvelet transform for image denoising, IEEE Trans. Image Process. 11, 6, 131-141.
  • Gabriel A., Dauvergne F. (1982) The localisation method used at EMBL, Nuclear Instrum. Methods Phys. Res. 201, 1, 223-224. [CrossRef]
  • Bruce A.G., Sardy S., Tseng P. (1998) Block coordinate relaxation methods for nonparametric signal denoising, Proc. SPIE 3391, Wavelot Application V, 75, 26 March, doi: 10.1117/12.304915, The International Society for Optical Engineering, pp. 75-86.
  • Bobin J., Moudden Y., Fadili M.J., Starck J.-L. (2009) Morphological diversity and sparsity for multichannel data restoration, J. Math. Imaging. Vis. 33, 2, 149-168. [CrossRef]
  • Elad M. (2006) Why simple shrinkage is still relevant for redundant representations?, IEEE Trans. Inf. Theory 52, 12, 5559-5569. [CrossRef]
  • Donoho D., Kutyniok G. (2010) Microlocal analysis of the geometric separation problem, Technical Report, No. 2010-01, Dept. of Statistics, Stanford University.
  • Roth S., Black M.J. (2005) Fields of Experts: a framework for learning image priors, Proc. of IEEE Computer Vision and Pattern Recognition, Providence, RI, USA, 20-25 June.
  • Peiying C., Yuandi W. (2009) A new fourth-order equation model for image inpainting, Proc. 6th International Conference on Fuzzy Systems and Knowledge Discovery, Shanghai, China, 14-16 Aug.
  • Kutyniok G., Lim W. (2011) Compactly supported shearlets are optimally sparse, J. Approx. Theory 163, 1564-1589. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.