Dossier: Advances in Signal Processing and Image Analysis for Physico-Chemical, Analytical Chemistry and Chemical Sensing
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 2, March-April 2014
Dossier: Advances in Signal Processing and Image Analysis for Physico-Chemical, Analytical Chemistry and Chemical Sensing
Page(s) 245 - 259
DOI https://doi.org/10.2516/ogst/2014013
Published online 27 March 2014
  • Bertrand L., Languille M.-A., Cohen S.X., Robinet L., Gervais C., Leroy S., Bernard D., Le Pennec E., Josse W., Doucet J., Schdder S. (2011) European research platform IPANEMA at the SOLEIL synchrotron for ancient and historical materials, J. Synchrotron Radiat. 18, 5, 765-772. doi:10.1107/S090904951102334X. [CrossRef] [PubMed]
  • Echard J.-P., Bertrand L., von Bohlen A., Le Hô A.-S., Paris C., Bellot-Gurlet L., Soulier B., Lattuati-Derieux A., Thao S., Robinet L., Lavédrine B., Vaiedelich S. (2010) The nature of the extraordinary finish of Stradivari’s instruments, Angew. Chem. Int. Ed. 49, 1, 197-201, ISSN 1521-3773. [CrossRef]
  • Gueriau P., Mocuta C., Dutheil D.B., Cohen S.X., Thiaudière D., the OT1 consortium, Charbonnier S., Clément G., Bertrand L. (2014) Trace elemental imaging of rare earth elements discriminates tissues at microscale in flat fossils, PLOS ONE (accepted).
  • Tarabalka Y., Chanussot J., Benediktsson J. (2010) Segmentation and classification of hyperspectral data using watershed transformation, Pattern Recognition 43, 7, 2367-2379. [CrossRef]
  • Bunte M., Thompson D., Castano R., Chien S., Greeley R. (2011) Metric learning for hyperspectral image segmentation, IEEE WHISPERS, Lisbon, Portugal, 6-9 June.
  • Acito N., Corsini G., Diani M. (2003) An unsupervised algorithm for hyperspectral image segmentation based on the Gaussian mixture model, Proc. IGARSS, 6, pages 3745-3747.
  • Yang J.-M., Yu P.-T., Kuo B.-C. (2010) A nonparametric feature extraction and its application to nearest neighbor classification for hyperspectral image data, IEEE Trans. Geosci. Remote Sens. 48, 3, 1279-1293. [CrossRef]
  • Tarabalka Y. (2010), Classification of Hyperspectral Data Using Spectral-Spatial Approaches. PhD thesis, Grenoble INP. Chapter 1.
  • Farag A., Mohamed R., El-Baz A. (2005) A unified framework for map estimation in remote sensing image segmentation, IEEE Trans. Geosci. Remote Sens. 43, 7, 1617-1634. [CrossRef]
  • Tarabalka Y., Benediktsson J.A., Chanussot J., Tilton J.C. (2010) Multiple spectral-spatial classification approach for hyperspectral data, IEEE Trans. Geosci. Remote Sens. 48, 11, 4122-4132.
  • Biernacki Ch., Celeux G., Govaert G., Langrognet F. (2006) Model-based cluster and discriminant analysis with the MIXMOD software, Comput. Statist. Data Anal. 51, 2, 587-600. [CrossRef] [MathSciNet]
  • Maugis C., Michel B. (2012) A non asymptotic penalized criterion for Gaussian mixture model selection, ESAIM Probab. Stat. 15, 41-68. [CrossRef] [EDP Sciences]
  • Kolaczyk E., Ju J., Gopal S. (2005) Multiscale, multigranular statistical image segmentation, J. Amer. Statist. Assoc. 100, 472, 1358-1369. [CrossRef] [MathSciNet]
  • Antoniadis A., Bigot J., von Sachs R. (2008) A multiscale approach for statistical characterization of functional images, J. Comput. Graph. Statist. 18, 1, 216-237. [CrossRef]
  • Blekas K., Likas A., Galatsanos N.P., Lagaris I.E. (2005) A spatially constrained mixture model for image segmentation, IEEE Trans. Neural Netw. 16, 2, 494-498. [CrossRef] [PubMed]
  • Nikou C., Likas A., Galatsanos N.P. (2010) A bayesian framework for image segmentation with spatially varying mixtures. IEEE Transactions on Image Processing 19, 9, 2278-89. [CrossRef] [MathSciNet]
  • Cohen S.X., Le Pennec E. (2012) Partition-based conditional density estimation, ESAIM Probab. Stat. doi:10.105l /ps/2012017.
  • Cohen S.X., Le Pennec E. (2011) Conditional density estimation by penalized likelihood model selection and applications, Technical report, INRIA.
  • Donoho D. (1997) CART and best-ortho-basis: a connection, Ann. Statist. 25, 5, 1870-1911. [CrossRef] [MathSciNet]
  • Birgé L., Massart P. (2007) Minimal penalties for Gaussian model selection, Probability theory and related fields 138, 1-2, 33-73. [CrossRef] [MathSciNet]
  • Baudry J.-P., Maugis C., Michel B. (2012) Slope heuristics: overview and implementation, Stat. Comput. 22, 455-470. [CrossRef]
  • Massart P. (2007). Concentration inequalities and model selection, volume 1896 of Lecture Notes in Mathematics, Springer, Berlin, Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour, 6-23 July, 2003, With a foreword by Jean Picard.
  • Birgé L., Massart P. (1998) Minimum contrast estimators on sieves: exponential bounds and rates of convergence, Bernoulli 4, 3, 329-375. [CrossRef] [MathSciNet]
  • van de Geer S. (1995) The method of sieves and minimum contrast estimators, Math. Methods Statist. 4, 20-38. [MathSciNet]
  • Huang Y., Pollak I., Do M., Bouman C. (2006) Fast search for best representations in multitree dictionaries, IEEE Trans. Image Process. 15, 7, 1779-1793. [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.