Dossier: Advances in Signal Processing and Image Analysis for Physico-Chemical, Analytical Chemistry and Chemical Sensing
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 2, March-April 2014
Dossier: Advances in Signal Processing and Image Analysis for Physico-Chemical, Analytical Chemistry and Chemical Sensing
Page(s) 245 - 259
DOI https://doi.org/10.2516/ogst/2014013
Published online 27 March 2014
  • Bertrand L., Languille M.-A., Cohen S.X., Robinet L., Gervais C., Leroy S., Bernard D., Le Pennec E., Josse W., Doucet J., Schdder S. (2011) European research platform IPANEMA at the SOLEIL synchrotron for ancient and historical materials, J. Synchrotron Radiat. 18, 5, 765-772. doi:10.1107/S090904951102334X. [CrossRef] [PubMed] [Google Scholar]
  • Echard J.-P., Bertrand L., von Bohlen A., Le Hô A.-S., Paris C., Bellot-Gurlet L., Soulier B., Lattuati-Derieux A., Thao S., Robinet L., Lavédrine B., Vaiedelich S. (2010) The nature of the extraordinary finish of Stradivari’s instruments, Angew. Chem. Int. Ed. 49, 1, 197-201, ISSN 1521-3773. [CrossRef] [Google Scholar]
  • Gueriau P., Mocuta C., Dutheil D.B., Cohen S.X., Thiaudière D., the OT1 consortium, Charbonnier S., Clément G., Bertrand L. (2014) Trace elemental imaging of rare earth elements discriminates tissues at microscale in flat fossils, PLOS ONE (accepted). [Google Scholar]
  • Tarabalka Y., Chanussot J., Benediktsson J. (2010) Segmentation and classification of hyperspectral data using watershed transformation, Pattern Recognition 43, 7, 2367-2379. [CrossRef] [Google Scholar]
  • Bunte M., Thompson D., Castano R., Chien S., Greeley R. (2011) Metric learning for hyperspectral image segmentation, IEEE WHISPERS, Lisbon, Portugal, 6-9 June. [Google Scholar]
  • Acito N., Corsini G., Diani M. (2003) An unsupervised algorithm for hyperspectral image segmentation based on the Gaussian mixture model, Proc. IGARSS, 6, pages 3745-3747. [Google Scholar]
  • Yang J.-M., Yu P.-T., Kuo B.-C. (2010) A nonparametric feature extraction and its application to nearest neighbor classification for hyperspectral image data, IEEE Trans. Geosci. Remote Sens. 48, 3, 1279-1293. [CrossRef] [Google Scholar]
  • Tarabalka Y. (2010), Classification of Hyperspectral Data Using Spectral-Spatial Approaches. PhD thesis, Grenoble INP. Chapter 1. [Google Scholar]
  • Farag A., Mohamed R., El-Baz A. (2005) A unified framework for map estimation in remote sensing image segmentation, IEEE Trans. Geosci. Remote Sens. 43, 7, 1617-1634. [CrossRef] [Google Scholar]
  • Tarabalka Y., Benediktsson J.A., Chanussot J., Tilton J.C. (2010) Multiple spectral-spatial classification approach for hyperspectral data, IEEE Trans. Geosci. Remote Sens. 48, 11, 4122-4132. [Google Scholar]
  • Biernacki Ch., Celeux G., Govaert G., Langrognet F. (2006) Model-based cluster and discriminant analysis with the MIXMOD software, Comput. Statist. Data Anal. 51, 2, 587-600. [Google Scholar]
  • Maugis C., Michel B. (2012) A non asymptotic penalized criterion for Gaussian mixture model selection, ESAIM Probab. Stat. 15, 41-68. [CrossRef] [EDP Sciences] [Google Scholar]
  • Kolaczyk E., Ju J., Gopal S. (2005) Multiscale, multigranular statistical image segmentation, J. Amer. Statist. Assoc. 100, 472, 1358-1369. [CrossRef] [MathSciNet] [Google Scholar]
  • Antoniadis A., Bigot J., von Sachs R. (2008) A multiscale approach for statistical characterization of functional images, J. Comput. Graph. Statist. 18, 1, 216-237. [CrossRef] [Google Scholar]
  • Blekas K., Likas A., Galatsanos N.P., Lagaris I.E. (2005) A spatially constrained mixture model for image segmentation, IEEE Trans. Neural Netw. 16, 2, 494-498. [CrossRef] [PubMed] [Google Scholar]
  • Nikou C., Likas A., Galatsanos N.P. (2010) A bayesian framework for image segmentation with spatially varying mixtures. IEEE Transactions on Image Processing 19, 9, 2278-89. [CrossRef] [MathSciNet] [Google Scholar]
  • Cohen S.X., Le Pennec E. (2012) Partition-based conditional density estimation, ESAIM Probab. Stat. doi:10.105l /ps/2012017. [Google Scholar]
  • Cohen S.X., Le Pennec E. (2011) Conditional density estimation by penalized likelihood model selection and applications, Technical report, INRIA. [Google Scholar]
  • Donoho D. (1997) CART and best-ortho-basis: a connection, Ann. Statist. 25, 5, 1870-1911. [CrossRef] [MathSciNet] [Google Scholar]
  • Birgé L., Massart P. (2007) Minimal penalties for Gaussian model selection, Probability theory and related fields 138, 1-2, 33-73. [Google Scholar]
  • Baudry J.-P., Maugis C., Michel B. (2012) Slope heuristics: overview and implementation, Stat. Comput. 22, 455-470. [CrossRef] [Google Scholar]
  • Massart P. (2007). Concentration inequalities and model selection, volume 1896 of Lecture Notes in Mathematics, Springer, Berlin, Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour, 6-23 July, 2003, With a foreword by Jean Picard. [Google Scholar]
  • Birgé L., Massart P. (1998) Minimum contrast estimators on sieves: exponential bounds and rates of convergence, Bernoulli 4, 3, 329-375. [CrossRef] [MathSciNet] [Google Scholar]
  • van de Geer S. (1995) The method of sieves and minimum contrast estimators, Math. Methods Statist. 4, 20-38. [MathSciNet] [Google Scholar]
  • Huang Y., Pollak I., Do M., Bouman C. (2006) Fast search for best representations in multitree dictionaries, IEEE Trans. Image Process. 15, 7, 1779-1793. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.