Dossier: Advances in Signal Processing and Image Analysis for Physico-Chemical, Analytical Chemistry and Chemical Sensing
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 2, March-April 2014
Dossier: Advances in Signal Processing and Image Analysis for Physico-Chemical, Analytical Chemistry and Chemical Sensing
Page(s) 279 - 291
DOI https://doi.org/10.2516/ogst/2013116
Published online 24 October 2013
  • Ersen O., Hirlimann C., Drillon M., Werckmann J., Tihay F., Pham-Huu C., Crucifix C., Schultz P. (2007) 3D-TEM characterization of nanometric objects, Solid State Sci. 9, 12, 1088-1098. [CrossRef] [Google Scholar]
  • Kak A.C., Slaney M. (1988) Principles of computerized tomographic imaging, Engineering 33, 1, 327. [Google Scholar]
  • Gordon R., Bender R., Herman G.T. (1970) Algebraic Reconstruction Techniques (ART) for three-dimensional electron microscopy and X-ray photography, J. Theor. Biol. 29, 3, 471-481. [CrossRef] [PubMed] [Google Scholar]
  • Andersen A.H., Kak A.C. (1984) Simultaneous Algebraic Reconstruction Technique (SART): a superior implementation of the art algorithm, Ultrason. Imag. 6, 1, 81-94. [Google Scholar]
  • Jiang M., Wang G. (2003) Convergence of the simultaneous algebraic reconstruction technique (SART), IEEE Trans. Image Process. 12, 8, 957-61. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Crowther R.A. (1971) Procedures for three-dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs, Philos. Trans. R. Soc. Lon. B: Biol. Sci. 261, 837, 221-230. [CrossRef] [Google Scholar]
  • Potts D., Steid G. (2000) New Fourier reconstruction algorithms for computerized tomography, Wavelet Applications in Signal and Image Processing VIII Proc. SPIE 4119, 13-23. [CrossRef] [Google Scholar]
  • Frank J. (2006) Electron tomography: methods for three- dimensional visualization of structures in the cell, Springer. [Google Scholar]
  • Ress D., Harlow M.L., Schwarz M., Marshall R.M., McMahan U.J. (1999) Automatic acquisition of fiducial markers and alignment of images in tilt series for electron tomography, J. Electron Micros. 48, 3, 277-287. [CrossRef] [Google Scholar]
  • Brandt S.S., Heikkonen J., Engelhardt P. (2001) Multiphase method for automatic alignment of transmission electron microscope images using markers, J. Struct. Biol. 133, 3, 201-213. [CrossRef] [Google Scholar]
  • Amat F., Moussavi F., Comolli L.R., Elidan G., Downing K.H., Horowitz M. (2008) Markov random field based automatic image alignment for electron tomography, J. Struct. Biol. 161, 3, 260-275. [CrossRef] [PubMed] [Google Scholar]
  • Brandt S.S., Heikkonen J., Engelhardt P. (2001) Automatic alignment of transmission electron microscope tilt series without fiducial markers, J. Struct. Biol. 136, 3, 201-213. [CrossRef] [Google Scholar]
  • Brandt S.S., Ziese U. (2006) Automatic TEM image alignment by trifocal geometry, J. Microsc. 222, 1-14. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Sorzano C.O.S., Messaoudi C., Eibauer M., Bilbao-Castro J., Hegerl R., Nickell S., Marco S., Carazo J. (2009) Marker-free image registration of electron tomography tilt-series, BMC Bioinformatics 10, 1, 124. [Google Scholar]
  • Frank J., McEwen B.F. (1992) Alignment by cross- correlation. Electron Tomography Threedimensional Imaging with the Transmission Electron Microscope, pp. 205-213, Plenum Press, New York. [Google Scholar]
  • Gratadour D., Mugnier L.M., Rouan D. (2005) Sub-pixel image registration with a maximum likelihood estimator application to the first adaptive optics observations of arp 220 in the L band, Astron. Astrophys. 365, 357-365. [Google Scholar]
  • Liu Y., Penczek P.A., McEwen B.F., Frank J. (1995) A marker-free alignment method for electron tomography, Ultramicroscopy 58, 3-4, 393-402. [Google Scholar]
  • Tzimiropoulos G., Argyriou V., Zafeiriou S., Stathaki T. (2010) Robust FFT-based scale-invariant image registration with image gradients, IEEE Trans. Pattern Anal. Mach. Intel!. 32, 10, 1899-1906. [CrossRef] [Google Scholar]
  • Cop M., Dengler J. (1990) A multiresolution approach to the 3D reconstruction of a 50s ribosome from an EM-tilt series solving the alignment problem without gold particles, Proceedings 10th International Conference on Pattern Recognition, Atlantic City, NJ, 16-21 June. [Google Scholar]
  • Owen C.H., Landis W.J. (1996) Alignment of electron tomographic series by correlation without the use of gold particles, Ultramicroscopy 63, 1, 27-38. [CrossRef] [PubMed] [Google Scholar]
  • Winkler H., Taylor K.A. (2006) Accurate marker-free alignment with simultaneous geometry determination and reconstruction of tilt series in electron tomography, Ultramicroscopy 106, 3, 240-254. [CrossRef] [PubMed] [Google Scholar]
  • Houben L., Bar Sadan M. (2011) Refinement procedure for the image alignment in high-resolution electron tomography, Ultramicroscopy 111, 9-10, 1512-20. [CrossRef] [Google Scholar]
  • Penczek P.A., Grassucci R.A., Frank J. (1994) The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-electron microscopy of biological particles, Ultramicroscopy 53, 3, 251-270. [CrossRef] [PubMed] [Google Scholar]
  • Yang C., Ng E.G., Penczek P.A. (2005) Unified 3-D structure and projection orientation refinement using quasi- newton algorithm, J. Struct. Biol. 149, 1, 53-64. [CrossRef] [PubMed] [Google Scholar]
  • Parkinson D.Y., Knoechel C., Yang C., Larabell C.A., Le Gros M.A. (2012) Automatic alignment and reconstruction of images for soft X-ray tomography, J. Struct. Biol. 177, 2, 259-66. [CrossRef] [PubMed] [Google Scholar]
  • Nelder J.A., Mead R. (1965) A simplex method for function minimization, Comput. J. 7, 4, 308-313. [Google Scholar]
  • Lagarias J.C., Reeds J.A., Wright M.H., Wright P.E. (1998) Convergence properties of the Nelder-Mead simplex method in low dimensions, SIAM J. Optim. 9, 1, 112. [CrossRef] [Google Scholar]
  • Wang Z., Bovik A.C., Sheikh H.R., Simoncelli E.P. (2004) Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process. 13, 4, 600-612. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Thevenaz P., Blu T., Unser M. (2000) Interpolation revisited, IEEE Trans. Med. Imag. 19, 7, 739-758. [Google Scholar]
  • Rudin L.I., Osher S., Fatemi E. (1992) Nonlinear total variation based noise removal algorithms, Physica D 60, 259-268. [Google Scholar]
  • Momey F., Denis L., Mennessier C., Thiébaut E., Becker J.M., Desbat L. (2011) A new representation and projection model for tomography, based on separable B-splines, IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) Record, pp. 2602-2609. [Google Scholar]
  • DeMan B., Basu S. (2004) Distance driven projection and backprojection in three dimensions, Phys. Medicine Biol. 49, 11, 2463-2475. [Google Scholar]
  • Soulez F., Denis L., Fournier C., Thiébaut E., Goepfert C. (2007) Inverse-problem approach for particle digital holography: accurate location based on local optimization, J. Opt. Soc. Am. A 24, 4, 1164-1171. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.