IFP Energies nouvelles International Conference: LES4ICE 2012 - Large Eddy Simulation for Internal Combustion Engine Flows
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 1, January-February 2014
IFP Energies nouvelles International Conference: LES4ICE 2012 - Large Eddy Simulation for Internal Combustion Engine Flows
Page(s) 29 - 40
DOI https://doi.org/10.2516/ogst/2013122
Published online 23 October 2013
  • Rutland C.J. (2011) Large-eddy simulations for Internal combustion engines - a review, Int. J. Eng. Res. 421-451. [Google Scholar]
  • Enaux B., Granet V., Vermorel O., Lacour C., Pera C., Angelberger C., Poinsot T. (2011) LES study of cycle-to-cycle variations in a spark ignition engine, Proc. Combust. Inst. 33, 2, 3115-3122. ISSN 1540-7489. [Google Scholar]
  • Goryntsev D., Sadiki A., Klein M., Janicka J. (2010) Analysis of cyclic variations of liquid fuel-air mixing processes in a realistic DISI IC-engine using Large Eddy Simulation, Int. J. Heat Fluid Flow 31, 5, 845-849. ISSN 0142-727X. [CrossRef] [Google Scholar]
  • Hasse C., Sohm V., Durst B. (2010) Numerical investigation of cyclic variations in gasoline engines using a hybrid URANS/LES modeling approach, Comput. Fluids 39, 1, 25-48. ISSN 0045-7930. [Google Scholar]
  • Vermorel O., Richard S., Colin O., Angelberger C., Benkenida A., Veynante D. (2009) Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES, Combust. Flame 156, 8, 15251541, ISSN 0010-2180. [CrossRef] [Google Scholar]
  • Vasilyev O.V. (2000) High order finite difference schemes on non-uniform meshes with good conservation properties, J. Comput. Phys. 157, 2, 746-761. [CrossRef] [Google Scholar]
  • Germano M., Piomelli U., Moin P., Cabot W.H. (1991) A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A: Fluid Dyn. 3, 7, 1760-1765. [Google Scholar]
  • Meneveau C., Lund T.S., Cabot W.H. (1996) A Lagrangian dynamic subgrid-scale model of turbulence, J. Fluid Mech. 319, 353-385. [CrossRef] [Google Scholar]
  • Balarac G., Pitsch H., Raman V. (2008) Development of a dynamic model for the subfilter scalar variance using the concept of optimal estimators, Phys. Fluids 20, 3, 035114. [Google Scholar]
  • Desjardins O., Blanquart G., Balarac G., Pitsch H. (2008) High order conservative finite difference scheme for variable density low Mach number turbulent flows, J. Comput. Phys. 227, 7125-7159. [CrossRef] [MathSciNet] [Google Scholar]
  • Stanescu D., Habashi W.G. (1998) 2n-storage low dissipation and dispersion Runge-Kutta schemes for computational acoustics, J. Comput. Phy. 143, 2, 674-681. [Google Scholar]
  • Gaitonde V.D., Visbal M.R. (1998) High-order schemes for Navier-Stokes equations: Algorithm and implementation into FLD3DI. (AFRL-VA-WP-TR-1998-3060), 21. [Google Scholar]
  • Mittal R., Iaccarino G. (2005) Immersed boundary methods, Annu. Rev. Fluid Mech. 37, 1, 239-261. [Google Scholar]
  • Poinsot T.J., Lele S.K. (1992) Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys. 101, 104-129. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • Lodato G., Domingo P., Vervisch L. (2008) Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows, J. Comput. Phys. 227, 5105-5143. [CrossRef] [Google Scholar]
  • Hirt C.W., Amsden A.A., Cook J.L. (1974) An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys. 14, 3, 227-253. [Google Scholar]
  • Shashank, Pitsch H. (2008) Large eddy simulation of internal combustion engine processes with immersed boundary technique, International Conference LES for Internal Combustion Engine Flows, 1-2 Dec. Rueil-Malmaison, France. [Google Scholar]
  • Duclos J.M., Zolver M. (1998) 3D modeling of intake, injection and combustion in a DI-SI engine under homogeneous and stratified operating conditions, Proceedings of the Fourth International Symposium COMODIA 98, 335-340. [Google Scholar]
  • Thobois L., Rymer G., Souleres T., Poinsot T. (2004) Large-eddy simulation in IC engine geometries, SAE Technical Paper 2004-01-1854. [Google Scholar]
  • Shashank S., Kang S., Pitsch H. (2009) Application of immersed boundary technique for large eddy simulation of IC engine processes, Academy colloquium on immersed boundary methods: current status and future research directions, 15-17 June, Amsterdam, The Netherlands. [Google Scholar]
  • Ferziger J.H., Peric M. (2001) Computational Methods for Fluid Dynamics, Springer-Verlag. [Google Scholar]
  • Meakin R.L. (2000) Adaptive spatial partitioning and refinement for overset structured grids, Comput. Meth. App. Mech. Eng. 189, 4, 1077-1117. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.