IFP Energies nouvelles International Conference: LES4ICE 2012 - Large Eddy Simulation for Internal Combustion Engine Flows
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 1, January-February 2014
IFP Energies nouvelles International Conference: LES4ICE 2012 - Large Eddy Simulation for Internal Combustion Engine Flows
Page(s) 11 - 27
DOI https://doi.org/10.2516/ogst/2013143
Published online 13 November 2013
  • Ferziger J.H., Perie M. (1997) Computational Methods for Fluid Dynamics, Springer. [Google Scholar]
  • Versteeg H.K., Malalasekera W. (1995) An Introduction to Computational Fluid Dynamics, Longman Scientific and Technical. [Google Scholar]
  • Thobois L., Rymer G., Soulères T., Poinsot T. (2004) Large-eddy simulation in IC engine geometries, SAE Paper 2004-01-1854, SAE Fuels and Lubricants Meeting and Exhibition, Toulouse, France, 8 June. [Google Scholar]
  • Thobois L., Rymer G., Soulères T., Poinsot T., Van Den Heuvel B. (2005) Large-eddy simulation for the prediction of aerodynamics in IC engines, Mt. J. Vehicle Design. 39, 368-382. [CrossRef] [Google Scholar]
  • Brusiani F., Bianchi G.M. (2008) LES simulation of ice nonreactive flows in fixed grids, SAE Paper 2008-01-0959. [Google Scholar]
  • Brusiani F., Pelloni P., Cazzoil G. (2008) Definition of a LES numerical methodology for the simulation of engine flows on fixed grids, ASME Paper ICES2008-1658. [Google Scholar]
  • Moureau V., Barton I., Angelberger C., Poinsot T. (2004) Towards large eddy simulation in internal-combustion engines: Simulation of a compressed tumble flow, SAE Paper 2004-01-1995. [Google Scholar]
  • Fogleman M., Lumley J., Rempfer D., Haworth D. (2004) Application of the proper orthogonal decomposition to datasets of internal combustion engine flows, J. Turbulence N23, doi: 10.1088/1468-5248/5/1/023. [Google Scholar]
  • Haworth D.C., Jansen K. (2000) Large-eddy simulation on unstructured deforming meshes: towards reciprocating IC engines, Comput. Fluids 29, 5, 493-524. ISSN 0045-7930. doi: 10.1016/S0045-7930 (99)00015-8. [CrossRef] [Google Scholar]
  • Haworth D.C. (1999) Large-eddy simulation of in-cylinder flows, Oil Gas Sci. Technol.-Rev. IFP 54, 2, 175-185. doi: 10.2516/ogst:1999012. [CrossRef] [EDP Sciences] [Google Scholar]
  • Laget O., Reveille B., Martinez L., Truffin K., Habchi C., Angelberger C. (2011) LES calculations of a four cylinder engine, SAE Paper 2011-01-0832. [Google Scholar]
  • Richard S., Colin O., Vermorel O., Benkenida A., Angelberger C., Veynante D. (2007) Towards large eddy simulation of combustion in spark ignition engines, Proc. Combust. Inst. 31, 2, 3059-3066. ISSN 1540-7489. doi: 10.1016/j.proci.2006.07.086. [CrossRef] [MathSciNet] [Google Scholar]
  • Thobois L., Lauvergne T., Poinsot T. (2007) Using LES to investigate reacting flow physics in engine design process, SAE Paper 2007-01-0166. [Google Scholar]
  • Vermorel O., Richard S., Colin O., Angelberger C., Benkenida A., Veynante D. (2009) Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES, Combust. Flame 156, 8, 1525-1541. ISSN 0010-2180. doi: 10.1016/j.combustflame.2009.04.007. [CrossRef] [Google Scholar]
  • Sagaut P. (2006) Large eddy simulation for incompressible flows: an introduction, Scientific computation, SpringerVerlag. ISBN 9783540263449. [Google Scholar]
  • OpenCFD (2004) Open FOAM Programmer’s Guide, OpenCFD Ltd. [Google Scholar]
  • Germano M., Piomelli U., Moin P., Cabot W.H. (1991) A dynamic subgrid-scale eddy viscosity model, Phys. fluids A 3, 1760. doi: 10.1063/1.857955. [NASA ADS] [CrossRef] [Google Scholar]
  • Nicoud F., Ducros F. (1999) Subgrid-scale stress modelling based on the square of the velocity gradient tensor, Flow. Turbul. Combust. 62, 183-200. doi: 10.1023/A: 1009995426001. [CrossRef] [Google Scholar]
  • Eaton J., Johnston J., Westphal R. (1986) Experimental study of flow reattachment in a single-sided sudden expansion, Contractor report 3765, NASA Ames Research Center. [Google Scholar]
  • Brusiani F., Forte C., Bianchi G.M. (2007) Assessment of a numerical methodology for large eddy simulation of ice wall bounded non-reactive flows, SAE Paper 2007-01-41451. [Google Scholar]
  • Montorfano A., Piscaglia F., Ferrari G. (2011) Inlet boundary conditions for incompressible LES: A comparative study, Math. Comput. Model. 57, 7-8, 1640-1647. ISSN 0895-7177. doi: 10.1016/j.mcm.2011.10.077. [CrossRef] [Google Scholar]
  • Piscaglia F., Montorfano A., Onorati A. (2011) Development of NSCBC for compressible navier-stokes equations in openfoam, Sixth OpenFOAM Workshop, Penn State, June 12-16. [Google Scholar]
  • Piscaglia F., Montorfano A., Onorati A. (2012) Improving the simulation of the acoustic performance of complex silencers for ice by a multi-dimensional non-linear approach, SAE Int. J. Eng. 2, 5, 633-648. [Google Scholar]
  • Piscaglia F., Montorfano A., Onorati A. (2013) Development of a non-reflecting boundary condition for multidimensional nonlinear duct acoustic computation, J. Sound Vibration 332, 4, 922-935. ISSN 0022-460X. doi: 10.1016/j.jsv.2012.09.030. [CrossRef] [Google Scholar]
  • Tabor G.R., Baba-Ahmadi M.H. (2010) Inlet conditions for large eddy simulation: A review, Comput. Fluids 39, 4, 553-567. [CrossRef] [MathSciNet] [Google Scholar]
  • Davidson L. (2007) Using isotropic synthetic fluctuations as inlet boundary conditions for unsteady simulations, Adv. Appl. Fluid Mech. 1, 1, 1-35. [MathSciNet] [Google Scholar]
  • Billson M. (2004) Computational Techniques for Turbulence Generated Noise, PhD thesis, Chalmers University of Technology, Goteborg, Sweden. [Google Scholar]
  • Pope S.B. (2001) Turbulent Flows, Cambridge University Press. [Google Scholar]
  • Brusiani F., Bianchi G.M., Baritaud T., Bianchi d’Espinosa A. (2009) Using LES for predicting high performance car airbox flow, SAE Int. J. Passeng. Cars-Mech. Syst. 2, 1, 1050-1064. [Google Scholar]
  • Hirsch C. (2007) Numerical Computation of Internal and External Flows, Kindle Edition. [Google Scholar]
  • Jasak H. (1996) Error analysis and estimation in the Finite Volume method with applications to fluid flows, PhD thesis, Imperial College, University of London. [Google Scholar]
  • Akselvoll K., Moin P. (1995) Large eddy simulation of turbulent confined coanular jets and flow over a backward- facing step. Rept. TF-63, Thermosciences Division, Department of Mechanical Engineering. [Google Scholar]
  • Davidson L. (2009) Large eddy simulations: How to evaluate resolution, Mt. J. Heat Fluid Flow 30, 5, 1016-1025. [CrossRef] [Google Scholar]
  • Spalding D.B. (1961) A single formula for the law of the wall. J. Appl. Mech. Trans. ASME Series E 28, 455-458. [CrossRef] [Google Scholar]
  • Fureby C., Tabor G., Weller H.G., Gosman A.D. (1997) A comparative study of subgrid scale models in homogeneous isotropic turbulence, Phys. fluids 9, 1416-1429. doi: 10.1063/1.869254. [CrossRef] [MathSciNet] [Google Scholar]
  • Greenshields C.J., Weller H.G., Gasparini L., Reese J.M. Implementation of semi-discrete, nonstaggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows, Int. J. Numer. Meth. Fluids 63, 1. ISSN 1097-0363. [Google Scholar]
  • Juretic F., Gosman A.D. (2010) Error analysis of the finitevolume method with respect to mesh type, Numer. Heat Trans. Part B: Fund. 57, 414-439. [CrossRef] [Google Scholar]
  • Wollblad C., Davidson L., Eriksson L.-E. (2006) Large eddy simulation of transonic flow with shock wave/turbulent boundary layer interaction, AIAA J. 44, 2340-2353. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.