IFP Energies nouvelles International Conference: LES4ICE 2012 - Large Eddy Simulation for Internal Combustion Engine Flows
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 1, January-February 2014
IFP Energies nouvelles International Conference: LES4ICE 2012 - Large Eddy Simulation for Internal Combustion Engine Flows
Page(s) 41 - 59
DOI https://doi.org/10.2516/ogst/2013126
Published online 01 October 2013
  • Amelio M., Bova S., De Bartolo C. (2000) The Separation Between Turbulence and Mean Flory in ICE LDV Data: ICE LDV Data: The Complementary Point-of-view of Different Investigation Tools, J. Eng. Gas Turbine. Power 122, 579-587. [CrossRef] [Google Scholar]
  • Li Y., Zhao H., Leach B., Ma T., Ladommatos N. (2004) Characterization of an in-cylinder flow structure in a high-tumble spark ignition engine, Int. J. Engine Res. 5, 5, 375-400. [CrossRef] [Google Scholar]
  • St. Hill N., Asadamongkon P., Lee K.C. (2000) A study of turbulence and cyclic variation levels in internal combustion engine cylinders, Proceedings of the 10th International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 10-13 July. [Google Scholar]
  • Jarvis S., Justham T., Clarke A., Garner C.P., Hargrave G. K., Richardson D. (2006) Motored SI IC Engine In- Cylinder Flow Field Measurement Using Time Resolved Digital PIV for Characterisation of Cyclic Variation, SAE Technical Paper 2006-01-1044. [Google Scholar]
  • Baby X., Dupont A., Ahmed A., Deslandes W., Charnay G., Michard M. (2002) A New Methodology to Analyze Cycle-to-Cycle Aerodynamic Variations, SAE Technical Paper 2002-01-2837. [Google Scholar]
  • Cosadia I., Boree J., Charnay G., Dumont P. (2006) Cyclic variations of the swirling flow in a Diesel transparent engine, Exp. Fluids 41, 115-134. [CrossRef] [Google Scholar]
  • Chen H., Reuss D.L., Sick V. (2012) On the use and interpretation of proper orthogonal decomposition of in- cylinder engine flows, Meas. Sci. Technol. 23, 8. [Google Scholar]
  • Chen H., Reuss D.L., Hung D.L.S., Sick V. (2012) A practical guide for using proper orthogonal decomposition in engine research, Int. J. Engine Res., published online August 31, 2012 as doi: 10.1177/1468087412455748. [Google Scholar]
  • Fogleman M., Lumley J., Rempfer D., Haworth D. (2004) Application of the proper orthogonal decomposition to datasets of internal combustion engine flows, J, Turbulence 5, 23. [Google Scholar]
  • Liu K., Haworth D.C. (2011) Development and Assessment of Proper Orthogonal Decomposition for Analysis of Turbulent Flow in Piston Engines, SAE Technical Paper 2011-01-0830. [Google Scholar]
  • Voisine M., Thomas L., Boree J., Rey P. (2011) Spatio-temporal structure and cycle to cycle variations of an in- cylinder tumbling flow, Exp. Fluids 50, 1393-1407. [CrossRef] [Google Scholar]
  • Cosadia I., Boree J., Dumont P. (2007) Coupling time- resolved PIV flow-fields and phase-invariant proper orthogonal decomposition for the description of the parameters space in a transparent Diesel engine, Exp. Fluids 43, 357-370. [CrossRef] [Google Scholar]
  • Haworth D.C. (2005) A review of turbulent combustion modeling for multidimensional in-cylinder CFD, SAE Technical Paper 2005-01-0993. [Google Scholar]
  • Haworth D.C. (1999) Large-eddy simulation of in-cylinder flows, Oil Gas Sci. Technol. 54, 175-185. [Google Scholar]
  • El Tahry S.H., Haworth D.C. (1992) Directions in turbulence modeling for in-cylinder flows in reciprocating engines, AIAA J. Propuls. Power 8, 1040-1048. [CrossRef] [Google Scholar]
  • Haworth D.C., Jansen K. (2000) Large-eddy simulation on unstructured deforming meshes: Towards reciprocating IC engines, Comput. Fluids 29, 493-524. [Google Scholar]
  • Celik I.B., Yavuz I., Smirnov A. (2001) Large eddy simulations of in-cylinder turbulence for internal combustion engines: A review, Int. J. Engine Res. 2, 119-148. [CrossRef] [Google Scholar]
  • Celik I.B., Yavuz I., Smirnov A., Smith J., Amin E., Gel A. (2000) Prediction of in-cylinder turbulence for IC engines, Combust. Sci. Technol. 153, 339-368. [CrossRef] [Google Scholar]
  • Celik I.B., Amin E., Smith J., Yavuz I., Gel A. (1998) Towards large eddy simulation using the KIVA- code, 11th International Multidimensional Engine Modeling User’s Group Meeting, Detroit, Michigan, February. [Google Scholar]
  • Naitoh K., Itoh T., Takagi Y., Kuwahara K. (1992) Large eddy simulation of premixed-flame in engine based on the multi-level formulation and renormalization group theory, SAE Technical Paper 920590. [Google Scholar]
  • Smirnov A., Yavuz I., Celik I.B. (1999) Diesel combustion and LES of in-cylinder turbulence for IC engines, In-Cylinder Flows and Combustion Processes. ASME Fall Technical Conference, Ann Arbor, Michigan, October. [Google Scholar]
  • Smith J., Smirnov A., Yavuz I., Celik I.B. (1998) Simulation of swirling flows related to an intake stroke of a Diesel engine, ASME ICE-Division Fall Conference, Clymer, New York, September. [Google Scholar]
  • Vermorel O., Richard S., Colin O., Angelberger C., Benkenida A. (2007) Multi-cycle LES simulations of flow and combustion in PFI SI 4-valve production engine, SAE Technical Paper 2007-01-0151. [Google Scholar]
  • Richard S., Colin O., Vermorel O., Benkenida A., Angelberger C., Veynante D. (2007) Towards large eddy simulation of combustion in spark ignition engines, Proc. Combust. Inst. 31, 3059-3066. [Google Scholar]
  • Vermorel O., Richard S., Colin O., Angelberger C., Benkenida A., Veynante D. (2009) Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES, Combust. Flame 156, 1525-1541. [CrossRef] [Google Scholar]
  • Laget O., Reveille B., Martinez L., Trun K., Habchi C., Angelberger C. (2011) LES calculations of a four cylinder engine, SAE Technical Paper 2011-01-0832. [Google Scholar]
  • Hu B., Rutland C.J. (2006) Flamelet modeling with LES for Diesel engine simulations, SAE Technical Paper 2006-01-0058. [Google Scholar]
  • Hu B., Jhavar R., Singh S., Reitz R.D., Rutland C.J. (2007) LES modeling of Diesel combustion under partially premixed and non-premixed conditions, SAE Technical Paper 2007-01-0163. [Google Scholar]
  • Hu B., Rutland C.J., Shethaji T. (2008) Combustion modeling of conventional Diesel-type and HCCI type Diesel combustion with LES, SAE Technical Paper 2008-01-0958. [Google Scholar]
  • Enaux B., Granet V., Vermorel O., Lacour C., Thobois L., Dugue V., Poinsot T. (2011) Large Eddy Simulation of a Motored Single-Cylinder Piston Engine: Numerical Strategies and Validation, Flow Turbul. Combust. 86, 153-177. [Google Scholar]
  • Banerjee S., Liang T., Rutland C.J., Hu B. (2010) Validation of an LES multi-mode combustion model for Diesel combustion, SAE Technical Paper 2010-01-0361. [Google Scholar]
  • Zhang Y., Ghandhi J., Petersen B., Rutland C.J. (2010) Large eddy simulation of scalar dissipation rate in an internal combustion engine, SAE Technical Paper 2010-01-0625. [Google Scholar]
  • Zhang Y., Rutland C.J. (2011) A mixing controlled direct chemistry (MCDC) model for Diesel engine combustion modeling using large-eddy simulation, Combust. Theory Model. 16, 1-18. [Google Scholar]
  • Rutland C.J. (2011) Large-eddy simulations for internal combustion engines - a review, Int. J. Engine Res. 12, 4, 421-451. [CrossRef] [EDP Sciences] [Google Scholar]
  • Pera C., Angelberger C. (2011) Large Eddy Simulation of a Motored Single-Cylinder Engine Using System Simulation to Define Boundary Conditions: Methodology and Validation, SAE Technical Paper 2011-01-0834. [Google Scholar]
  • Reuss D.L., Rosalik M.E. (1998) PIV Measurements During Combustion in a Reciprocating Internal Combustion Engine, Proceedings of the 9th International Symposium on Applications of Laser Technologies in Fluid Mechanics, Lisbon, Portugal, 13-16 July. [Google Scholar]
  • Reuss D.L. (2000) Cyclic Variability of Large-Scale Turbulent Structures in Directed and Undirected IC Engine Flows, SAE Technical Paper 2000-01-0246. [Google Scholar]
  • Reuss D.L., Kuo T.-W., Khalighi B., Haworth D., Rosalik M. (1995) Particle Image Velocimetry Measurements in a High-Swirl Engine Used for Evaluation of Computational Fluid Dynamics Calculations, SAE Technical Paper 952381. [Google Scholar]
  • Megerle M., Sick V., Reuss D.L. (2002) Measurement of digital particle image velocimetry precision using electrooptically created particle-image displacements, Meas. Sci. Technol. 13, 997-1005. [Google Scholar]
  • CD-adapco (2011) Methodology for STAR-CD Version 4.16, http://www.cdadapco.com. [Google Scholar]
  • CD-adapco (2011) User guide for STAR-CD Version 4.16, http://www.cdadapco.com. [Google Scholar]
  • Asproulis P.N. (1994) High resolution numerical predictions of hypersonic flows on unstructured meshes, PhD Thesis, Imperial College, London. [Google Scholar]
  • Issa R.I. (1986) Solution of the implicitly discretised fluid flow equations by operator-splitting, J. Comput. Phys. 62, 40-65. [NASA ADS] [CrossRef] [Google Scholar]
  • Issa R.I., Gosman A.D., Watkins A.P. (1986) The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme, J. Comput. Phys. 62, 66-82. [Google Scholar]
  • Speziale C.G. (1991) Analytical methods for the development of Reynolds-stress closures in turbulence, Annu. Rev. Fluid Mech. 23, 107-157. [Google Scholar]
  • Yoshizawa A. (1985) Statistical theory for compressible turbulent shear flows, with the application to subgrid scale modeling, Phys. Fluids 29, 2152-2164. [Google Scholar]
  • Spalding D.B. (1961) A single formula for the law of the wall, J. Appl. Mech. 28, 455-457. [Google Scholar]
  • Liu K., Haworth D.C. (2010) Large-eddy simulation for an axisymmetric piston-cylinder assembly with and without swirl, Flow Turbul. Combust. 85, 279-307. [CrossRef] [Google Scholar]
  • CD-adapco (2011) User guide for es-ice Version 4.16, http://www.cdadapco.com. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.