IFP Energies nouvelles International Conference: MAPI 2012: Multiscale Approaches for Process Innovation
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 6, November-December 2013
IFP Energies nouvelles International Conference: MAPI 2012: Multiscale Approaches for Process Innovation
Page(s) 1059 - 1072
DOI https://doi.org/10.2516/ogst/2012085
Published online 21 June 2013
  • Acharya A., Ulbrecht J. (1978) Note on the influence of viscoelasticity on the coalescence rate of bubbles and drops, AIChE J. 24, 348-351. [CrossRef] [Google Scholar]
  • Astarita G., Apuzzo G. (1965) Motion of gas bubbles in non- Newtonian liquids, AIChE J. 11, 815-820. [CrossRef] [Google Scholar]
  • Bisgaard C. (1983) Velocity fields around spheres and bubbles investigated by laser-Doppler anemometry, J. Non-Newton. Fluid Mech. 12, 283-302. [CrossRef] [Google Scholar]
  • Charpentier J.C. (2002) The triplet "molecular processesproduct-process" engineering: the future of chemical engineering? Chem. Eng. Sci. 57, 4667-4690. [CrossRef] [Google Scholar]
  • Charpentier J.C. (2010) Among the trends for a modern chemical engineering, the third paradigm: the time and length multiscale approach as an efficient tool for process intensification and product design and engineering, Chem. Eng. Res. Des. 88, 248-254. [CrossRef] [Google Scholar]
  • Chhabra R.P. (2006) Bubbles, Drops & Particles in Non-Newtonian Fluids, 2nd ed, CPC Press, Boca Raton. [Google Scholar]
  • Clift R., Grace J.R., Weber M.E. (1978) Bubbles, Drops and Particles, Academic Press, New York. [Google Scholar]
  • De Kee D., Chhabra R.P., Dajan A. (1990) Motion and coalescence of gas bubbles in non-Newtonian polymer solutions, J. Non-Newton. Fluid Mech. 37, 1-18. [CrossRef] [Google Scholar]
  • Debregeas G., de Gennes P.G., Brochard-Wyart F. (1998) The life and death of bare viscous bubbles, Science 279, 1704-1706. [CrossRef] [PubMed] [Google Scholar]
  • Fan W.Y., Ma Y.G., Jiang S.K., Yang K., Li H.Z. (2010) An experimental investigation for bubble rising in non-Newtonian fluids and empirical correlation of drag coefficient, Trans. ASME J. Fluids Eng. 132, 021305. [CrossRef] [Google Scholar]
  • Frank X., Li H.Z. (2005a) An analytical approach to the rise velocity of periodic bubble chains in non-Newtonian fluids, Eur. Phys. J. E 16, 29-35. [CrossRef] [EDP Sciences] [OGST] [Google Scholar]
  • Frank X., Li H.Z. (2005b) Complex flow field around a bubble rising in non-Newtonian fluids, Phys. Rev. E 71, 036309. [CrossRef] [Google Scholar]
  • Frank X., Li H.Z. (2006) Negative wake behind a sphere rising in viscoelastic fluids: a lattice Boltzmann investigation, Phys. Rev. E 74, 056307. [CrossRef] [Google Scholar]
  • Frank X., Funfschilling D., Midoux N., Li H.Z. (2006) Bubbles in a viscous liquid: Lattice Boltzmann simulation and experimental validation, J. Fluid Mech. 546, 113-122. [CrossRef] [Google Scholar]
  • Frank X., Charpentier J.C., Ma Y.G., Midoux N., Li H.Z. (2012) A multiscale approach for modelling bubbles rising in non-Newtonian fluids, Ind. Eng. Chem. Res. 51, 2084-2093. [CrossRef] [Google Scholar]
  • Frank X., Li H.Z., Funfschilling D., Burdin F., Ma Y. (2003) Bubble motion in non-Newtonian fluids and suspensions, Can. J. Chem. Eng. 81, 483-490. [CrossRef] [Google Scholar]
  • Funfschilling D., Li H.Z. (2001) Flow of non-Newtonian fluids around bubbles: PIV measurements and birefringence visualization, Chem. Eng. Sci. 56, 1137-1141. [CrossRef] [Google Scholar]
  • Gell-Mann M. (1994) The Quark and the Jaguar: Adventures in the Simple and the Complex, Wiley. [Google Scholar]
  • Hague M.W., Nigam K.D.P., Joshi J.B., Viswanathan K. (1987) Studies on mixing time in bubble columns with pseudo- plastic solutions, Ind. Eng. Chem. Res. 26, 82-86. [CrossRef] [Google Scholar]
  • Hassager O. (1979) Negative wake behind bubbles in non- Newtonian liquids, Nature 279, 402-403. [CrossRef] [PubMed] [Google Scholar]
  • Holland J.H. (1992) Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence, 2nd ed., MIT Press. [Google Scholar]
  • Jiang S.K., Ma Y.G., Fan W.Y., Yang K., Li H.Z. (2011) Fractal and chaotic behaviour of bubble coalescence in non- Newtonian fluids: a multiscale analysis, Korean J. Chem. Eng. 28, 56-63. [CrossRef] [Google Scholar]
  • Kemiha M., Frank X., Poncin S., Li H.Z. (2006) Origin of the negative wake behind a bubble rising in non-Newtonian fluids, Chem. Eng. Sci. 61, 4041-4047. [CrossRef] [Google Scholar]
  • Li H.Z., Frank X., Funfschilling D., Diard P. (2004) Bubbles’ rising dynamics in polymeric solutions, Phys. Lett. A 325, 43-50. [CrossRef] [Google Scholar]
  • Li H.Z., Mouline Y., Choplin L., Midoux N. (1997) Chaotic bubble coalescence in non-Newtonian fluids, Int. J. Multiphase Flow 23, 713-723. [Google Scholar]
  • Li H.Z., Mouline Y., Midoux N. (2002) Modelling the bubble formation dynamics in non-Newtonian fluids, Chem. Eng. Sci. 57, 339-346. [CrossRef] [Google Scholar]
  • Lin T.J., Lin G.M. (2009) Mechanisms of in-line coalescence of two-unequal bubbles in a non-Newtonian fluid, Chem. Eng. J. 150, 750-756. [CrossRef] [Google Scholar]
  • Luo K.H., Xia J., Monaco E. (2009) Multiscale modelling of multiphase flow with complex interactions, J. Multiscale Modelling 1, 125-156. [CrossRef] [Google Scholar]
  • Mallon E., Franks N. (2000) Ants estimate area using Buffon’s needle, Proc. R. Soc. Lond. B 267, 765-770. [CrossRef] [Google Scholar]
  • Rodrigue D. (2002) A simple correlation for gas bubbles rising in power-law fluids, Can. J. Chem. Eng. 80, 289-292. [CrossRef] [Google Scholar]
  • Sigli D., Coutanceau M. (1977) Effect of finite boundaries on the slow laminar isothermal flow of a viscoelastic fluid around a spherical obstacle, J. Non-Newton. Fluid Mech. 2, 1-21. [CrossRef] [Google Scholar]
  • Succi S. (2001) The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Clarendon Press, Oxford. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.