IFP Energies nouvelles International Conference: MAPI 2012: Multiscale Approaches for Process Innovation
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 6, November-December 2013
IFP Energies nouvelles International Conference: MAPI 2012: Multiscale Approaches for Process Innovation
Page(s) 1059 - 1072
DOI https://doi.org/10.2516/ogst/2012085
Published online 21 June 2013
  • Acharya A., Ulbrecht J. (1978) Note on the influence of viscoelasticity on the coalescence rate of bubbles and drops, AIChE J. 24, 348-351. [CrossRef]
  • Astarita G., Apuzzo G. (1965) Motion of gas bubbles in non- Newtonian liquids, AIChE J. 11, 815-820. [CrossRef]
  • Bisgaard C. (1983) Velocity fields around spheres and bubbles investigated by laser-Doppler anemometry, J. Non-Newton. Fluid Mech. 12, 283-302. [CrossRef]
  • Charpentier J.C. (2002) The triplet "molecular processesproduct-process" engineering: the future of chemical engineering? Chem. Eng. Sci. 57, 4667-4690. [CrossRef]
  • Charpentier J.C. (2010) Among the trends for a modern chemical engineering, the third paradigm: the time and length multiscale approach as an efficient tool for process intensification and product design and engineering, Chem. Eng. Res. Des. 88, 248-254. [CrossRef]
  • Chhabra R.P. (2006) Bubbles, Drops & Particles in Non-Newtonian Fluids, 2nd ed, CPC Press, Boca Raton.
  • Clift R., Grace J.R., Weber M.E. (1978) Bubbles, Drops and Particles, Academic Press, New York.
  • De Kee D., Chhabra R.P., Dajan A. (1990) Motion and coalescence of gas bubbles in non-Newtonian polymer solutions, J. Non-Newton. Fluid Mech. 37, 1-18. [CrossRef]
  • Debregeas G., de Gennes P.G., Brochard-Wyart F. (1998) The life and death of bare viscous bubbles, Science 279, 1704-1706. [CrossRef] [PubMed]
  • Fan W.Y., Ma Y.G., Jiang S.K., Yang K., Li H.Z. (2010) An experimental investigation for bubble rising in non-Newtonian fluids and empirical correlation of drag coefficient, Trans. ASME J. Fluids Eng. 132, 021305. [CrossRef]
  • Frank X., Li H.Z. (2005a) An analytical approach to the rise velocity of periodic bubble chains in non-Newtonian fluids, Eur. Phys. J. E 16, 29-35. [CrossRef] [EDP Sciences] [OGST]
  • Frank X., Li H.Z. (2005b) Complex flow field around a bubble rising in non-Newtonian fluids, Phys. Rev. E 71, 036309. [CrossRef]
  • Frank X., Li H.Z. (2006) Negative wake behind a sphere rising in viscoelastic fluids: a lattice Boltzmann investigation, Phys. Rev. E 74, 056307. [CrossRef]
  • Frank X., Funfschilling D., Midoux N., Li H.Z. (2006) Bubbles in a viscous liquid: Lattice Boltzmann simulation and experimental validation, J. Fluid Mech. 546, 113-122. [CrossRef]
  • Frank X., Charpentier J.C., Ma Y.G., Midoux N., Li H.Z. (2012) A multiscale approach for modelling bubbles rising in non-Newtonian fluids, Ind. Eng. Chem. Res. 51, 2084-2093. [CrossRef]
  • Frank X., Li H.Z., Funfschilling D., Burdin F., Ma Y. (2003) Bubble motion in non-Newtonian fluids and suspensions, Can. J. Chem. Eng. 81, 483-490. [CrossRef]
  • Funfschilling D., Li H.Z. (2001) Flow of non-Newtonian fluids around bubbles: PIV measurements and birefringence visualization, Chem. Eng. Sci. 56, 1137-1141. [CrossRef]
  • Gell-Mann M. (1994) The Quark and the Jaguar: Adventures in the Simple and the Complex, Wiley.
  • Hague M.W., Nigam K.D.P., Joshi J.B., Viswanathan K. (1987) Studies on mixing time in bubble columns with pseudo- plastic solutions, Ind. Eng. Chem. Res. 26, 82-86. [CrossRef]
  • Hassager O. (1979) Negative wake behind bubbles in non- Newtonian liquids, Nature 279, 402-403. [CrossRef] [PubMed]
  • Holland J.H. (1992) Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence, 2nd ed., MIT Press.
  • Jiang S.K., Ma Y.G., Fan W.Y., Yang K., Li H.Z. (2011) Fractal and chaotic behaviour of bubble coalescence in non- Newtonian fluids: a multiscale analysis, Korean J. Chem. Eng. 28, 56-63. [CrossRef]
  • Kemiha M., Frank X., Poncin S., Li H.Z. (2006) Origin of the negative wake behind a bubble rising in non-Newtonian fluids, Chem. Eng. Sci. 61, 4041-4047. [CrossRef]
  • Li H.Z., Frank X., Funfschilling D., Diard P. (2004) Bubbles’ rising dynamics in polymeric solutions, Phys. Lett. A 325, 43-50. [CrossRef]
  • Li H.Z., Mouline Y., Choplin L., Midoux N. (1997) Chaotic bubble coalescence in non-Newtonian fluids, Int. J. Multiphase Flow 23, 713-723. [CrossRef]
  • Li H.Z., Mouline Y., Midoux N. (2002) Modelling the bubble formation dynamics in non-Newtonian fluids, Chem. Eng. Sci. 57, 339-346. [CrossRef]
  • Lin T.J., Lin G.M. (2009) Mechanisms of in-line coalescence of two-unequal bubbles in a non-Newtonian fluid, Chem. Eng. J. 150, 750-756. [CrossRef]
  • Luo K.H., Xia J., Monaco E. (2009) Multiscale modelling of multiphase flow with complex interactions, J. Multiscale Modelling 1, 125-156. [CrossRef]
  • Mallon E., Franks N. (2000) Ants estimate area using Buffon’s needle, Proc. R. Soc. Lond. B 267, 765-770. [CrossRef]
  • Rodrigue D. (2002) A simple correlation for gas bubbles rising in power-law fluids, Can. J. Chem. Eng. 80, 289-292. [CrossRef]
  • Sigli D., Coutanceau M. (1977) Effect of finite boundaries on the slow laminar isothermal flow of a viscoelastic fluid around a spherical obstacle, J. Non-Newton. Fluid Mech. 2, 1-21. [CrossRef]
  • Succi S. (2001) The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Clarendon Press, Oxford.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.