IFP Energies nouvelles International Conference: MAPI 2012: Multiscale Approaches for Process Innovation
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 6, November-December 2013
IFP Energies nouvelles International Conference: MAPI 2012: Multiscale Approaches for Process Innovation
Page(s) 1073 - 1092
DOI https://doi.org/10.2516/ogst/2013183
Published online 17 December 2013
  • Geldart D. (1973) Types of gaz fluidisation, Powder Technology 7, 285-292. [CrossRef] [Google Scholar]
  • Agrawal K., Loezos P.N., Syamlal M., Sundaresan S. (2001) The role of meso-scale structures in rapid gas-solid flows, Journal of Fluid Mechanics 445, 151-185. [CrossRef] [Google Scholar]
  • Parmentier J.F. (2010) Extension du formalisme Euler / Euler pour la simulation des lits fluidisés de particules du groupe A dans la classification de Geldart, PhD Thesis, Institut National Polytechnique de Toulouse. [Google Scholar]
  • Ozel A. (2011) Development of large eddy simulation approach for simulation of reactive circulating fluidized beds, PhD Thesis, Institut National Polytechnique de Toulouse. [Google Scholar]
  • Kunii D., Levenspiel O. (1991) Fluidization Engineering. Edition 2. [Google Scholar]
  • Bi H.T., Ellis N., Abba I.A., Grace J.R. (2000) A state-of- the-art review of gas-solid turbulent fluidization, Chemical Engineering Science 55, 4789-4825. [CrossRef] [Google Scholar]
  • Gobin A., Neau H., Simonin O., Llinas J.R., Reiling V., Sélo J.L. (2003) Fluid dynamic numerical simulation of a gas phase polymerization reactor, Int. J. Numer. Meth. Fluids 43, 1199-1220. [CrossRef] [Google Scholar]
  • Fede P., Moula G., Ingram A., Dumas T., Simonin O. (2009) 3D Numerical simulation and PEPT experimental investigation of pressurized gas-solid fluidized bed hydrodynamic, Proc. 9th International Symposium on Gas-Particle Flows, 2009 Joint U.S. European Fluids Engineering Summer Meeting, Number FEDSM09-78053, Vail, Colorado. [Google Scholar]
  • Eaton A.M., Smoot L.D., Hill S.C., Eatough C.N. (1999) Components, formulations, solutions, evaluation, and application of comprehensive combustion models, Progress in Energy and Combustion Science 25, 387-436. [CrossRef] [Google Scholar]
  • Konan N.A., Neau H., Simonin O., Dupoizat M., Le Goaziou T. (2009) 3D Unsteady Polydispersed Simulation of Uranium Tetrafluoride Particles in Fluidized Bed Pilot, Proc. 20th International Conference On Fluidized Bed Combustion, FBC 2009, Xian City (China), 2009. [Google Scholar]
  • Cao B., Zhang P., Zheng X., Xu C., Gao J. (2008) Numerical simulation of hydrodynamics and coke combustions in FCC regenerator, Petroleum Science and Technology 26, 3. [Google Scholar]
  • Massol A. (2004) Simulations numériques d’écoulements à travers des réseaux fixes de sphéres monodisperses et bidisperses, pour des nombres de Reynolds modérés, PhD Thesis, Institut National Polytechnique de Toulouse (CERFACS). [Google Scholar]
  • Selle L., Nicoud F., Poinsot T. (2004) The actual impedance of non-reflecting boundary conditions: implications for the computation of resonators, AIAA Journal 42, 5, 958-964. [CrossRef] [Google Scholar]
  • Cabrit O., Artal L., Nicoud F. (2007) Direct numerical simulation of turbulent multispecies channel flow with wall ablation, Miami, USA. [Google Scholar]
  • Xu C.R., Fu W.B. (1997) Study on the burning rate of a carbon particle under forced convection conditions, Combustion Science and Technology 124, 167-182. [CrossRef] [Google Scholar]
  • Blake T.R. (2002) Low Reynolds number combustion of a spherical carbon particle, Combustion and Flame 129, 87-111. [CrossRef] [Google Scholar]
  • Wichman I.S., McMaster R.L. (2007) On combustion Around a porous blowing reactant sphere in a low Reynolds number crossflow, Combustion Science and Technology 179, 933-960. [CrossRef] [Google Scholar]
  • Enwald H., Peirano E., Almsted A.E. (1996) Eulerian two- phase flow theory applied to fluidization, International Journal of Multiphase Flow 22, suppl, 22-61. [CrossRef] [Google Scholar]
  • Deutsch E., Simonin O. (1991) Large eddy simulation applied to the motion of particles in stationary homogeneous turbulence, Number ASME FED1, pp. 34-42. [Google Scholar]
  • Simonin O., Deutsch E., Minier J.P. (1993) Eulerian prediction of the fluid/particle correlated motion in turbulent two-step flows, Advances in Turbulence IV, 51, 1, 275-283. [CrossRef] [Google Scholar]
  • Fevrier P., Simonin O., Legendre D. (2003) Particle Dispersion and Preferential Concentration Dependance on Turbulent Reynolds Number from Direct and Large Eddy Simulations of Isotropic Homogeneous Turbulence, in: Proc. 4th Int. Conference on Multiphase Flow, ICMF - 2001, New Orleans (USA), 2001-01-01. [Google Scholar]
  • Simonin O. (1995) Summerschool on numerical modelling and prediction of dispersed two-phase flows, IMVU, Meserburg, Germany. [Google Scholar]
  • Holloway W., Sundaresan S. (2012) Filtered models for reacting gas-particle flows, Chem. Eng. Science 82, 132. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.