IFP Energies nouvelles International Conference: MAPI 2012: Multiscale Approaches for Process Innovation
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Numéro 6, November-December 2013
IFP Energies nouvelles International Conference: MAPI 2012: Multiscale Approaches for Process Innovation
Page(s) 1059 - 1072
DOI https://doi.org/10.2516/ogst/2012085
Publié en ligne 21 juin 2013
  • Acharya A., Ulbrecht J. (1978) Note on the influence of viscoelasticity on the coalescence rate of bubbles and drops, AIChE J. 24, 348-351. [CrossRef] [Google Scholar]
  • Astarita G., Apuzzo G. (1965) Motion of gas bubbles in non- Newtonian liquids, AIChE J. 11, 815-820. [CrossRef] [Google Scholar]
  • Bisgaard C. (1983) Velocity fields around spheres and bubbles investigated by laser-Doppler anemometry, J. Non-Newton. Fluid Mech. 12, 283-302. [CrossRef] [Google Scholar]
  • Charpentier J.C. (2002) The triplet "molecular processesproduct-process" engineering: the future of chemical engineering? Chem. Eng. Sci. 57, 4667-4690. [CrossRef] [Google Scholar]
  • Charpentier J.C. (2010) Among the trends for a modern chemical engineering, the third paradigm: the time and length multiscale approach as an efficient tool for process intensification and product design and engineering, Chem. Eng. Res. Des. 88, 248-254. [CrossRef] [Google Scholar]
  • Chhabra R.P. (2006) Bubbles, Drops & Particles in Non-Newtonian Fluids, 2nd ed, CPC Press, Boca Raton. [Google Scholar]
  • Clift R., Grace J.R., Weber M.E. (1978) Bubbles, Drops and Particles, Academic Press, New York. [Google Scholar]
  • De Kee D., Chhabra R.P., Dajan A. (1990) Motion and coalescence of gas bubbles in non-Newtonian polymer solutions, J. Non-Newton. Fluid Mech. 37, 1-18. [CrossRef] [Google Scholar]
  • Debregeas G., de Gennes P.G., Brochard-Wyart F. (1998) The life and death of bare viscous bubbles, Science 279, 1704-1706. [CrossRef] [PubMed] [Google Scholar]
  • Fan W.Y., Ma Y.G., Jiang S.K., Yang K., Li H.Z. (2010) An experimental investigation for bubble rising in non-Newtonian fluids and empirical correlation of drag coefficient, Trans. ASME J. Fluids Eng. 132, 021305. [CrossRef] [Google Scholar]
  • Frank X., Li H.Z. (2005a) An analytical approach to the rise velocity of periodic bubble chains in non-Newtonian fluids, Eur. Phys. J. E 16, 29-35. [CrossRef] [EDP Sciences] [OGST] [Google Scholar]
  • Frank X., Li H.Z. (2005b) Complex flow field around a bubble rising in non-Newtonian fluids, Phys. Rev. E 71, 036309. [CrossRef] [Google Scholar]
  • Frank X., Li H.Z. (2006) Negative wake behind a sphere rising in viscoelastic fluids: a lattice Boltzmann investigation, Phys. Rev. E 74, 056307. [CrossRef] [Google Scholar]
  • Frank X., Funfschilling D., Midoux N., Li H.Z. (2006) Bubbles in a viscous liquid: Lattice Boltzmann simulation and experimental validation, J. Fluid Mech. 546, 113-122. [CrossRef] [Google Scholar]
  • Frank X., Charpentier J.C., Ma Y.G., Midoux N., Li H.Z. (2012) A multiscale approach for modelling bubbles rising in non-Newtonian fluids, Ind. Eng. Chem. Res. 51, 2084-2093. [CrossRef] [Google Scholar]
  • Frank X., Li H.Z., Funfschilling D., Burdin F., Ma Y. (2003) Bubble motion in non-Newtonian fluids and suspensions, Can. J. Chem. Eng. 81, 483-490. [CrossRef] [Google Scholar]
  • Funfschilling D., Li H.Z. (2001) Flow of non-Newtonian fluids around bubbles: PIV measurements and birefringence visualization, Chem. Eng. Sci. 56, 1137-1141. [CrossRef] [Google Scholar]
  • Gell-Mann M. (1994) The Quark and the Jaguar: Adventures in the Simple and the Complex, Wiley. [Google Scholar]
  • Hague M.W., Nigam K.D.P., Joshi J.B., Viswanathan K. (1987) Studies on mixing time in bubble columns with pseudo- plastic solutions, Ind. Eng. Chem. Res. 26, 82-86. [CrossRef] [Google Scholar]
  • Hassager O. (1979) Negative wake behind bubbles in non- Newtonian liquids, Nature 279, 402-403. [CrossRef] [PubMed] [Google Scholar]
  • Holland J.H. (1992) Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence, 2nd ed., MIT Press. [Google Scholar]
  • Jiang S.K., Ma Y.G., Fan W.Y., Yang K., Li H.Z. (2011) Fractal and chaotic behaviour of bubble coalescence in non- Newtonian fluids: a multiscale analysis, Korean J. Chem. Eng. 28, 56-63. [CrossRef] [Google Scholar]
  • Kemiha M., Frank X., Poncin S., Li H.Z. (2006) Origin of the negative wake behind a bubble rising in non-Newtonian fluids, Chem. Eng. Sci. 61, 4041-4047. [CrossRef] [Google Scholar]
  • Li H.Z., Frank X., Funfschilling D., Diard P. (2004) Bubbles’ rising dynamics in polymeric solutions, Phys. Lett. A 325, 43-50. [CrossRef] [Google Scholar]
  • Li H.Z., Mouline Y., Choplin L., Midoux N. (1997) Chaotic bubble coalescence in non-Newtonian fluids, Int. J. Multiphase Flow 23, 713-723. [CrossRef] [Google Scholar]
  • Li H.Z., Mouline Y., Midoux N. (2002) Modelling the bubble formation dynamics in non-Newtonian fluids, Chem. Eng. Sci. 57, 339-346. [CrossRef] [Google Scholar]
  • Lin T.J., Lin G.M. (2009) Mechanisms of in-line coalescence of two-unequal bubbles in a non-Newtonian fluid, Chem. Eng. J. 150, 750-756. [CrossRef] [Google Scholar]
  • Luo K.H., Xia J., Monaco E. (2009) Multiscale modelling of multiphase flow with complex interactions, J. Multiscale Modelling 1, 125-156. [CrossRef] [Google Scholar]
  • Mallon E., Franks N. (2000) Ants estimate area using Buffon’s needle, Proc. R. Soc. Lond. B 267, 765-770. [CrossRef] [Google Scholar]
  • Rodrigue D. (2002) A simple correlation for gas bubbles rising in power-law fluids, Can. J. Chem. Eng. 80, 289-292. [CrossRef] [Google Scholar]
  • Sigli D., Coutanceau M. (1977) Effect of finite boundaries on the slow laminar isothermal flow of a viscoelastic fluid around a spherical obstacle, J. Non-Newton. Fluid Mech. 2, 1-21. [CrossRef] [Google Scholar]
  • Succi S. (2001) The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Clarendon Press, Oxford. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.