IFP Energies nouvelles International Conference: MAPI 2012: Multiscale Approaches for Process Innovation
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 6, November-December 2013
IFP Energies nouvelles International Conference: MAPI 2012: Multiscale Approaches for Process Innovation
Page(s) 995 - 1005
DOI https://doi.org/10.2516/ogst/2013123
Published online 20 September 2013
  • Epling W.S., Campbell L.E., Yezerets A., Currier N.W., Parks J.E. (2004) Overview of the Fundamental Reactions and Degradation Mechanisms of NOx Storage/Reduction Catalysts, Catal. Rev. Sci. Eng. 46, 163-245. [CrossRef] [Google Scholar]
  • Roy S., Baiker A. (2009) NOx Storage-Reduction Catalysis: From Mechanism and Materials Properties to Storage-Reduction Performance, Chem. Rev. 109, 4054-4091. [CrossRef] [PubMed] [Google Scholar]
  • Granger P., Parvulescu V.I. (2011) Catalytic NOx Abatement Systems for Mobile Sources: From Three-Way to Lean Burn after-Treatment Technologies, Chem. Rev. 111, 3155-3207. [CrossRef] [PubMed] [Google Scholar]
  • Poulston S., Rajaram R.R. (2003) Regeneration of NOx trap catalysts, Catal. Today 81, 4, 603-610. [CrossRef] [Google Scholar]
  • Sedlmair C, Seshan K., Jentys A., Lercher J.A. (2002) Studies on the deactivation of NOx storage-reduction catalysts by sulfur dioxide, Catal. Today 75, 1-4, 413-419. [CrossRef] [Google Scholar]
  • Dementhon J.B., Colliou T., Martin B., Bouchez M., Guyon M., Messaoudi I., Noirot R., Michon S., Gérenet C., Pierron L. (2003) Application of NOx Adsorber to Diesel Depollution: Performances and Durability, Oil & Gas Sciemce and Technology — Rev. IFP 58, 129-149. [CrossRef] [EDP Sciences] [Google Scholar]
  • Malpartida I., Larrubia-Vargas M.A., Alemany L.J., Finocchio E., Busca G. (2008) Pt—Ba—Al203 for NOx storage and reduction: Characterization of the dispersed species, Appl. Catal. B: Env. 80, 3-4, 214-225. [CrossRef] [Google Scholar]
  • Breen J.P., Marella M., Pistarino C., Ross J.R.H. (2002) Sulfur-tolerant NOx storage traps: an infrared and thermodynamic study of the reactions of alkali and alkaline-earth metal sulfates, Catal. Lett. 80, 123-128. [CrossRef] [Google Scholar]
  • Engstrom P., Amberntsson A., Skoglundh M., Fridell E., Smedler G. (1999) Sulphur dioxide interaction with NOx storage catalysts, Appl. Catal. B: Env. 22, 4, L241-L248. [CrossRef] [Google Scholar]
  • Dawody J., Skoglundh M., Olsson L., Fridell E. (2005) Sulfur deactivation of Pt/SiO2, Pt/BaO/Al203, and BaO/Al203 NOx storage catalysts: Influence of SO2 exposure conditions, J. Catal. 234, 1, 206-218. [CrossRef] [Google Scholar]
  • Mahzoul H., Limousy L., Brilhac J.F., Gilot P. (2000) Experimental study of SO2 adsorption on barium-based NOx adsorbers, J. Anal. Appl. Pyrolysis 56, 2, 179-193. [CrossRef] [Google Scholar]
  • Kim D.H., Szanyi J., Kwak J.H., Szailer T., Hanson J., Wang C.M., Peden C.H.F. (2006) Effect of Barium Loading on the Desulfation of Pt-BaO/Al2O3 Studied by H2 TPRX, TEM, Sulfur K-edge XANES, and in Situ TRXRD, J. Phys. Chem. B 110, 21, 10441-10448. [CrossRef] [PubMed] [Google Scholar]
  • Luo J.-Y., Kisinger D., Abedi A., Epling W.S. (2010) Sulfur release from a model Pt/Ba/Al2O3 Diesel oxidation catalyst: Temperature-programmed and step-reponse techniques characterization, Appl. Catal. A: Gen. 383, 182-191. [CrossRef] [Google Scholar]
  • Parks J., Huff S., Pihl J., Choi J.-S., West B. (2005) Nitrogen Selectivity in Lean NOx Trap Catalysis with Diesel Engine In-Cylinder Regeneration, SAE Technical Paper 2005-01-3876. [Google Scholar]
  • Rohr F., Gobel U., Kattwinkel P., Kreuzer T., Muller W., Philipp S., Gélin P. (2007) New insight into the interaction of sulfur with Diesel NOx storage catalysts, Appl. Catal. B: Env. 70, 1-4, 189-197. [CrossRef] [Google Scholar]
  • Ji Y., Easterling V., Graham U, Fisk C., Crocker M., Choi J.-S. (2011) Effect of aging on the NOx storage and regeneration characteristics of fully formulated lean NOx trap catalysts, Appl. Catal. B: Env. 103, 3-4, 413-427. [Google Scholar]
  • Szailer T., Kwak J.H., Kim D.H., Szanyi J., Wang C., Peden C.H.F. (2006) Effecs of Ba loading and calcination temperature on BaAl2O4 formation for BaO/Al203 NOx storage and reduction catalysts, Catal. Today 114, 86-93. [CrossRef] [Google Scholar]
  • Elbouazzaoui S., Corbos E.C., Courtois X., Marecot P., Duprez D. (2005) A study of the deactivation by sulfur and regeneration of a model NSR Pt/Ba/Al2O3 catalyst, Appl. Catal. B: Env. 61, 3-4, 236-243. [CrossRef] [Google Scholar]
  • Pacchioni G., Ricart J.M., Illas F. (1994) Ab Initio Cluster Model Calculations on the Chemisorption of CO2 and SO2 Probe Molecules on MgO and CaO (100) Surfaces. A Theoretical Measure of Oxide Basicity, J. Am. Chem. Soc. 116, 22,10152-10158. [CrossRef] [Google Scholar]
  • Schneider W.F. (2004) Qualitative Differences in the Adsorption Chemistry of Acidic (CO2, SOx) and Amphiphilic (NOx) Species on the Alkaline Earth Oxides, J. Phys. Chem. B 108, 1, 273-282. [CrossRef] [Google Scholar]
  • Schneider W.F., Li J., Hass K.C. (2001) Combined Computational and Experimental Investigation of SO, Adsorption on MgO, J. Phys. Chem. B 105, 29, 6972-6979. [CrossRef] [Google Scholar]
  • Karlsen E.J., Nygren M.A., Pettersson L.G.M. (2003) Comparative Study on Structures and Energetics of NOx SOx, , and COx, Adsorption on Alkaline-Earth Metal Oxides, J. Phys. Chem. B 107, 31, 7795-7802. [CrossRef] [Google Scholar]
  • Rankovic N., Chizallet C., Nicolle A., Da Costa P. (2012) A molecular approach for unraveling surface phase transition: sulfation of BaO as a model NOx trap, Chem. Eur. J. 18, 10511-10514. [CrossRef] [Google Scholar]
  • Dawody J., Skoglundh M., Olsson L., Fridell E. (2007) Kinetic modelling of sulfur deactivation of Pt/BaO/Al2O3 and BaO/Al2O3 NOx storage catalysts, Appl. Catal. B: Env. 70, 1-4, 179-188. [CrossRef] [Google Scholar]
  • Olsson L., Fredriksson M., Blint R.J. (2010) Kinetic modeling of sulfur poisoning and regeneration of lean NOx) traps, Appl. Catal. B: Env. 100, 1-2, 31-41. [CrossRef] [Google Scholar]
  • Salciccioli M., Stamatakis M., Caratzoulas S., Vlachos D. G. (2011) A review of multiscale modeling of metal- catalyzed reactions: Mechanism development for complexity and emergent behavior, Chem. Eng. Sci. 66, 4319-4355. [CrossRef] [Google Scholar]
  • Perdew J.P., Wang Y. (1992) Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45, 23, 13244-13249. [NASA ADS] [CrossRef] [Google Scholar]
  • Kresse G., Hafner J. (1994) Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Phys. Rev. B 49, 20, 14251-14269. [Google Scholar]
  • Kresse G., Furthmüller J. (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6, 1, 15-50. [Google Scholar]
  • Kresse G., Joubert D. (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 3, 1758-1775. [Google Scholar]
  • Koop J., Deutschmann O. (2009) Detailed surface reaction mechanism for Pt-catalyzed abatement of automotive exhaust gases, Appl. Catal. B: Env. 91, 1-2, 47-58. [CrossRef] [Google Scholar]
  • Thormann J., Maier L., Pfeifer P., Kunz U., Deutschmann O., Schubert K. (2009) Steam reforming of hexadecane over a Rh/CeO2 catalyst in microchannels: Experimental and numerical investigation, Int. J. Hydrogen Energy 34, 12, 5108-5120. [CrossRef] [Google Scholar]
  • Mhadeshwar A.B., Wang H., Vlachos D.G. (2003) Ther modynamic Consistency in Microkinetic Development of Surface Reaction Mechanisms, J. Phys. Chem. B 107, 12721-12733. [CrossRef] [Google Scholar]
  • Paynter H.M. (1961) Analysis and Design of Engineering Systems, MIT Press. [Google Scholar]
  • Mauviot G., Le Berr F., Raux S., Perretti F., Malbec L.M., Millet C.N. (2009) OD Modelling: a Promising Means for Aftertreatment Issues in Modern Automotive Applications, Oil & Gas Sciemce and Technology — Rev. IFP 64, 285-307. [CrossRef] [EDP Sciences] [Google Scholar]
  • Rankovic N., Nicolle A., Da Costa P. (2010) Detailed Kinetic Modeling Study of NOx Oxidation and Storage and their Interactions over Pt/Ba/Al2O3 Monolith Catalysts, J. Phys. Chem. C 114, 7102-7111. [CrossRef] [Google Scholar]
  • Rankovic N., Nicolle A., Berthout D., Da Costa P. (2010) Extension of a kinetic model for NO oxidation and NOx storage to fixed-bed Pt/Ba/Al2O3 catalysts, Catal. Commun. 12, 1, 54-57. [CrossRef] [Google Scholar]
  • Rankovic N., Nicolle A., Berthout D., Da Costa P. (2011) Kinetic modeling study of the oxidation of carbon monoxide — hydrogen mixtures over Pt/Al2O3 and Rh/ Al2O3 catalysts, J. Phys. Chem. C 115, 20225-20236. [CrossRef] [Google Scholar]
  • Tuttlies U., Schmeisser V., Eigenberger G. (2004) A mechanistic simulation model for NOx storage catalyst dynamics, Chem. Eng. Sci. 59, 4731-4738. [CrossRef] [Google Scholar]
  • Stephen Whitaker (1986) Flow in Porous Media I: A theoretical derivation of Darcy’s law, Transport Porous Med. 1, 3-25. [Google Scholar]
  • Scotti A., Nova I., Tronconi E., Castoldi L., Lietti L., Forzatti P. (2004) Kinetic Study of Lean NOx Storage over the Pt-Ba/Al2O3 System, Ind. Eng. Chem. Res. 43, 4522-4534. [CrossRef] [Google Scholar]
  • Dumesic J.A., Rudd D.F., Aparicio L.M., Rekoske J.E., Trevino A.A. (1993) The Micokinetics of Heterogeneous Catalysis, American Chemical Society, Washington, DC. [Google Scholar]
  • Fuentealba P., Savin A. (2000) Electronic Structure and Bonding in the Ground State of Alkaline-Earth-Metal Monoxides and Carbides, J. Phys. Chem. A 104, 10882-10886. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.