IFP Energies nouvelles International Conference: MAPI 2012: Multiscale Approaches for Process Innovation
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 6, November-December 2013
IFP Energies nouvelles International Conference: MAPI 2012: Multiscale Approaches for Process Innovation
Page(s) 1007 - 1026
DOI https://doi.org/10.2516/ogst/2012069
Published online 15 April 2013
  • Makino A., Namikiri T., Kimura K. (2003) Combustion rates of graphite rods in the forward stagnation field with high-temperature airflow, Combust. Flame 132, 743-753. [CrossRef]
  • Higman C., Van der Burgt M. (2003) Gasification, Elsevier Science, USA.
  • Buhre B.J.P., Elliott L.K., Sheng C.D., Gupta R.P., Wall T.F. (2005) Oxy-fuel combustion technology for coal-fired power generation, Progr. Energ. Combust. Sci. 31, 283-307. [CrossRef]
  • Wall T., Liu Y., Spero C., Elliott L., Khare S., Rathnam R., Zeenathal F., Moghtaderi B., Buhre B., Sheng C., Gupta R., Yamada T., Makino K., Yu J. (2009) An overview on oxyfuel coal combustion – State of the art research and technology development, Chem. Eng. Res. Des. 87, 1003-1016. [CrossRef]
  • Hanjalic K., Sijercic M. (1994) Application of computer simulation in a design study of a new concept of pulverized coal gasification. Part I. Rationale of the concept and model of hydrodynamics and heat transfer in the reactor, Combust. Sci. Technol. 97, 331-350. [CrossRef]
  • Sijercic M., Hanjalic K. (1994) Application of computer simulation in a design study of a new concept of pulverized coal gasification. Part II. Model of coal reactions and discussion of results, Combust. Sci. Technol. 97, 351-375. [CrossRef]
  • Chen C., Horio M., Kojima T. (2000) Numerical simulation of entrained flow coal gasifiers. Part I: Modeling of coal gasification in an entrained flow gasifier, Chem. Eng. Sci. 55, 3861-3874. [CrossRef]
  • Silaen A., Wang. T. (2010) Effect of turbulence and devolatilization models on coal gasification simulation in an entrained-flow gasifier, Int. J. Heat Mass Trans. 53, 2074-2091. [CrossRef]
  • Chen C.J., Hung C.I., Chen W.H. (2012) Numerical investigation on performance of coal gasification under various injection patterns in an entrained flow gasifier, Appl. Energy 100, 218-228. http://dx.doi.org/10.1016/j.apenergy.2012.05.013. [CrossRef]
  • Edge P., Gharebaghi M., Irons R., Porter R., Porter R.T.J., Pourkashanian M., Smith D., Stephenson P., Williams A. (2011) Combustion modelling opportunities and challenges for oxy-coal carbon capture technology, Chem. Eng. Res. Des. 89, 1470-1493. [CrossRef]
  • Armstrong L.M., Gu S., Luo K. (2010) CFD modelling of the gasification of coal particles in fluidized beds, 14th Int. Heat Transfer Conference, by ASME, Washington, D.C., USA 8-13 Aug.
  • Oevermann M., Gerber S., Behrendt F. (2009) Euler-Lagrange/DEM simulation of wood gasification in a bubbling fluidized bed reactor, Particuology 7, 307-316. [CrossRef]
  • Baum M.M., Street P. (1971) Predicting the combustion behaviour of coal particles, Combust. Sci. Technol. 3, 231-243. [CrossRef]
  • Smith I.W. (1971) Kinetics of combustion of size-graded pulverized fuels in the temperature range 1200-2270 K, Combust. Flame 17, 303-314. [CrossRef]
  • Tu C.M., Davis H., Hottel H.C. (1934) Combustion rate of carbon. Combustion of spheres in flowing gas stream, Ind. Eng. Chem. 26, 749-757. [CrossRef]
  • Parker A., Hottel H.C. (1936) Combustion rate of carbon. Study of gas-film structure by microsampling, Ind. Eng. Chem. 28, 1334-1341. [CrossRef]
  • Kumar M., Ghoniem A.F. (2012) Multiphysics Simulations of Entrained Flow Gasification. Part II: Constructing and Validating the Overall Model, Energy Fuels 26, 464-479. [CrossRef]
  • Hayhurst A.N. (2000) The mass transfer coefficient for oxygen reacting with a carbon particle in a fluidized or packed bed, Combust. Flame 121, 679-688. [CrossRef]
  • Williams A., Pourkashanian M., Jones J.M. (2001) Combustion of pulverised coal and biomass, Progr. Energ. Combust. Sci. 27, 587-610. [CrossRef]
  • Maloneya D.J., Monazam E.R., Casleton K.H., Shaddix C.R. (2005) Evaluation of char combustion models: measurement and analysis of variability in char particle size and density, Proc. Combust. Inst. 30, 2197-2204. [CrossRef]
  • Molina A., Shaddix C.R. (2007) Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion, Proc. Combust. Inst. 31, 1905-1912. [CrossRef]
  • Blake T.R. (2002) Low Reynolds number combustion of a spherical carbon particle, Combust. Flame 129, 87-111. [CrossRef]
  • Higuera F.J. (2008) Combustion of a coal particle in a stream of dry gas, Combust. Flame 152, 230-244. [CrossRef]
  • Kestel M., Nikrityuk P.A., Meyer B. (2010) Numerical study of partial oxidation of a single coal particle in a stream of air, Proceeding of 14th Int. Heat Transfer Conference, by ASME, Washington D.C., USA, 8-13 Aug., CD: ISBN 978-0-7918-3879-2.
  • Kestel M., Nikrityuk P.A., Hennig O., Hasse C. (2012) Numerical study of the partial oxidation of a coal particle in steam and dry air atmospheres, IMA J. Appl. Math. 77, 32-46. [CrossRef] [MathSciNet]
  • Lee J.C., Yetter R.A., Dryer F.L. (1995) Transient numerical modeling of carbon particle ignition and oxidation, Combust. Flame. 101, 387-398. [CrossRef]
  • Nikrityuk P.A., Gräbner M., Kestel M., Meyer B., Numerical study of the influence of heterogeneous kinetics on the carbon consumption by oxidation of a single coal particle, Fuel, under 2nd review, in press.
  • Smith D.F., Gudmundsen A. (1931) Mechanism of combustion of individual particles of solid fuels, Ind. Eng. Chem. 23, 277-285. [CrossRef]
  • Turns S.R. (2000) An Introduction to Combustion, 2nd ed., McGraw-Hill, Boston, USA.
  • Dryer F.L., Glassman I. (1973) High temperature oxidation of CO and CH4, Proc. Combust. Inst. 14, 987-1003.
  • Wu Y., Smith Ph.J., Zhang J., Thornock J.N., Yue. G. (2010) Effects of turbulent mixing and controlling mechanisms in an entrained flow coal gasifier, Energy Fuels 24, 1170-1175. [CrossRef]
  • Chelliah H.K. (1995) Numerical modelling of graphite combustion using elementary, reduced and semi-global heterogeneous reaction mechanisms, in Modelling in Combustion Science, Buckmaster J., Takeno T. (eds), Springer, Berlin, pp. 130-147.
  • Chelliah H.K., Makino A., Kato I., Arki N., Law CK. (1996) Modeling of graphite oxidation in a stagnation-point flow field using detailed homogeneous and semiglobal heterogeneous mechanisms with comparisons to experiments, Combust. Flame. 104, 469-480. [CrossRef]
  • Sundaresan S., Amundson N.R. (1980) Diffusion and reaction in a stagnant boundary layer about a carbon particle. 5. Pseudo-steady-state structure and parameter sensitivity, Ind. Eng. Chem. Fundam. 19, 344-351. [CrossRef]
  • Tomboulides A.G., Lee J.C.Y., Orszag S.A. (1997) Numerical simulation of low Mach number reactive flows, J. Sci. Comput. 12, 139-167. [CrossRef]
  • Bathia S.K., Perlmutter D.D. (1980) A Random pore model for fluid-solid reactions: I. Isothermal, kinetic control, AIChE J. 26, 379-386. [CrossRef]
  • Everson R., Neomagus H., Kaitano R. (2005) The modeling of the combustion of high-ash coal-char particles suitable for pressurised fluidized bed combustion: shrinking reacted core model, Fuel 84, 1136-1143. [CrossRef]
  • Ahmed I.I., Gupta A.K. (2011) Particle size, porosity and temperature effects on char conversion, Appl. Energy 88, 4667-4677. [CrossRef]
  • Wittig K., Golia A., Nikrityuk P.A. (2012) 3D Numerical study of the influence of particle porosity on the heat and fluid flow, Prog. Comput. Fluid Dynam. 12, 207-219.
  • Kee R.J., Coltrin M.E., Glarborg P. (2003) Chemically Reacting Flow, Wiley-Interscience, New York.
  • Caram H.S., Amundson N.R. (1977) Diffusion and reaction in a stagnant boundary layer about a carbon particle, Ind. Eng. Chem. Fundam. 16, 171-181. [CrossRef]
  • Libby P.A., Blake Th.R. (1981) Burning carbon particles in the presence of water vapor, Combust. Flame 41, 123-147. [CrossRef]
  • Jones W.P., Lindstedt R.P. (1988) Global reaction schemes for hydrocarbon combustion, Combust. Flame 73, 233-249. [CrossRef]
  • McBride B.J., Gordon S., Reno M.A. (1993) Coefficients for calculating thermodynamic and transport properties of individual species, NASA Technical Memorandum 4513.
  • ANSYS-FLUENT V 13.0 – Commercially available CFD software package based on the Finite Volume method. Southpointe, 75 Technology Drive, Canonsburg, PA 15317, USA, www.ansys.com (2011).
  • de Souza-Santos M.L. (2010) Solid Fuels Combustion and Gasification, 2nd ed., CRC Press, 6000 Broken Sound Parkway NW, Suite 300.
  • Ranz W.E., Marshall W.R. (1952) Evaporation of drops, Chem Eng. Proc. 48, 173-180.
  • Schmidt R., Nikrityuk P.A. (2012) Numerical simulation of the transient temperature distribution inside moving particles, Can. J. Chem. Eng. 90, 246-262. [CrossRef]
  • Patankar S.V. (1980) Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing, Corp., Washington, DC.
  • Leonard B.P. (1979) A stable and accurate convection modeling procedure based on quadratic up-stream interpolation, Comp. Meth. Appl. Mech. Eng. 19, 59-68. [CrossRef]
  • Richter A., Nikrityuk P. (2012) Three-dimensional calculation of a chemically reacting coal-particle agglomerate moving in hot air. 9th European Conference on Coal Research and its Applications: ECCRIA 9, University of Nottingham, UK, 10-12 Sept.
  • Raghavan V., Babu V., Sundararajan T., Natarajan R. (2005) Flame shapes and burning rates of spherical fuel particles in a mixed convective environment, Int. J. Heat Mass Trans. 48, 5354-5370. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.