IFP Energies nouvelles International Conference: MAPI 2012: Multiscale Approaches for Process Innovation
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 6, November-December 2013
IFP Energies nouvelles International Conference: MAPI 2012: Multiscale Approaches for Process Innovation
Page(s) 1007 - 1026
DOI https://doi.org/10.2516/ogst/2012069
Published online 15 April 2013
  • Makino A., Namikiri T., Kimura K. (2003) Combustion rates of graphite rods in the forward stagnation field with high-temperature airflow, Combust. Flame 132, 743-753. [CrossRef] [Google Scholar]
  • Higman C., Van der Burgt M. (2003) Gasification, Elsevier Science, USA. [Google Scholar]
  • Buhre B.J.P., Elliott L.K., Sheng C.D., Gupta R.P., Wall T.F. (2005) Oxy-fuel combustion technology for coal-fired power generation, Progr. Energ. Combust. Sci. 31, 283-307. [CrossRef] [Google Scholar]
  • Wall T., Liu Y., Spero C., Elliott L., Khare S., Rathnam R., Zeenathal F., Moghtaderi B., Buhre B., Sheng C., Gupta R., Yamada T., Makino K., Yu J. (2009) An overview on oxyfuel coal combustion – State of the art research and technology development, Chem. Eng. Res. Des. 87, 1003-1016. [CrossRef] [Google Scholar]
  • Hanjalic K., Sijercic M. (1994) Application of computer simulation in a design study of a new concept of pulverized coal gasification. Part I. Rationale of the concept and model of hydrodynamics and heat transfer in the reactor, Combust. Sci. Technol. 97, 331-350. [CrossRef] [Google Scholar]
  • Sijercic M., Hanjalic K. (1994) Application of computer simulation in a design study of a new concept of pulverized coal gasification. Part II. Model of coal reactions and discussion of results, Combust. Sci. Technol. 97, 351-375. [CrossRef] [Google Scholar]
  • Chen C., Horio M., Kojima T. (2000) Numerical simulation of entrained flow coal gasifiers. Part I: Modeling of coal gasification in an entrained flow gasifier, Chem. Eng. Sci. 55, 3861-3874. [CrossRef] [Google Scholar]
  • Silaen A., Wang. T. (2010) Effect of turbulence and devolatilization models on coal gasification simulation in an entrained-flow gasifier, Int. J. Heat Mass Trans. 53, 2074-2091. [CrossRef] [Google Scholar]
  • Chen C.J., Hung C.I., Chen W.H. (2012) Numerical investigation on performance of coal gasification under various injection patterns in an entrained flow gasifier, Appl. Energy 100, 218-228. http://dx.doi.org/10.1016/j.apenergy.2012.05.013. [CrossRef] [Google Scholar]
  • Edge P., Gharebaghi M., Irons R., Porter R., Porter R.T.J., Pourkashanian M., Smith D., Stephenson P., Williams A. (2011) Combustion modelling opportunities and challenges for oxy-coal carbon capture technology, Chem. Eng. Res. Des. 89, 1470-1493. [CrossRef] [Google Scholar]
  • Armstrong L.M., Gu S., Luo K. (2010) CFD modelling of the gasification of coal particles in fluidized beds, 14th Int. Heat Transfer Conference, by ASME, Washington, D.C., USA 8-13 Aug. [Google Scholar]
  • Oevermann M., Gerber S., Behrendt F. (2009) Euler-Lagrange/DEM simulation of wood gasification in a bubbling fluidized bed reactor, Particuology 7, 307-316. [CrossRef] [Google Scholar]
  • Baum M.M., Street P. (1971) Predicting the combustion behaviour of coal particles, Combust. Sci. Technol. 3, 231-243. [CrossRef] [Google Scholar]
  • Smith I.W. (1971) Kinetics of combustion of size-graded pulverized fuels in the temperature range 1200-2270 K, Combust. Flame 17, 303-314. [CrossRef] [Google Scholar]
  • Tu C.M., Davis H., Hottel H.C. (1934) Combustion rate of carbon. Combustion of spheres in flowing gas stream, Ind. Eng. Chem. 26, 749-757. [CrossRef] [Google Scholar]
  • Parker A., Hottel H.C. (1936) Combustion rate of carbon. Study of gas-film structure by microsampling, Ind. Eng. Chem. 28, 1334-1341. [CrossRef] [Google Scholar]
  • Kumar M., Ghoniem A.F. (2012) Multiphysics Simulations of Entrained Flow Gasification. Part II: Constructing and Validating the Overall Model, Energy Fuels 26, 464-479. [CrossRef] [Google Scholar]
  • Hayhurst A.N. (2000) The mass transfer coefficient for oxygen reacting with a carbon particle in a fluidized or packed bed, Combust. Flame 121, 679-688. [CrossRef] [Google Scholar]
  • Williams A., Pourkashanian M., Jones J.M. (2001) Combustion of pulverised coal and biomass, Progr. Energ. Combust. Sci. 27, 587-610. [CrossRef] [Google Scholar]
  • Maloneya D.J., Monazam E.R., Casleton K.H., Shaddix C.R. (2005) Evaluation of char combustion models: measurement and analysis of variability in char particle size and density, Proc. Combust. Inst. 30, 2197-2204. [CrossRef] [Google Scholar]
  • Molina A., Shaddix C.R. (2007) Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion, Proc. Combust. Inst. 31, 1905-1912. [CrossRef] [Google Scholar]
  • Blake T.R. (2002) Low Reynolds number combustion of a spherical carbon particle, Combust. Flame 129, 87-111. [CrossRef] [Google Scholar]
  • Higuera F.J. (2008) Combustion of a coal particle in a stream of dry gas, Combust. Flame 152, 230-244. [CrossRef] [Google Scholar]
  • Kestel M., Nikrityuk P.A., Meyer B. (2010) Numerical study of partial oxidation of a single coal particle in a stream of air, Proceeding of 14th Int. Heat Transfer Conference, by ASME, Washington D.C., USA, 8-13 Aug., CD: ISBN 978-0-7918-3879-2. [Google Scholar]
  • Kestel M., Nikrityuk P.A., Hennig O., Hasse C. (2012) Numerical study of the partial oxidation of a coal particle in steam and dry air atmospheres, IMA J. Appl. Math. 77, 32-46. [CrossRef] [MathSciNet] [Google Scholar]
  • Lee J.C., Yetter R.A., Dryer F.L. (1995) Transient numerical modeling of carbon particle ignition and oxidation, Combust. Flame. 101, 387-398. [CrossRef] [Google Scholar]
  • Nikrityuk P.A., Gräbner M., Kestel M., Meyer B., Numerical study of the influence of heterogeneous kinetics on the carbon consumption by oxidation of a single coal particle, Fuel, under 2nd review, in press. [Google Scholar]
  • Smith D.F., Gudmundsen A. (1931) Mechanism of combustion of individual particles of solid fuels, Ind. Eng. Chem. 23, 277-285. [CrossRef] [Google Scholar]
  • Turns S.R. (2000) An Introduction to Combustion, 2nd ed., McGraw-Hill, Boston, USA. [Google Scholar]
  • Dryer F.L., Glassman I. (1973) High temperature oxidation of CO and CH4, Proc. Combust. Inst. 14, 987-1003. [Google Scholar]
  • Wu Y., Smith Ph.J., Zhang J., Thornock J.N., Yue. G. (2010) Effects of turbulent mixing and controlling mechanisms in an entrained flow coal gasifier, Energy Fuels 24, 1170-1175. [CrossRef] [Google Scholar]
  • Chelliah H.K. (1995) Numerical modelling of graphite combustion using elementary, reduced and semi-global heterogeneous reaction mechanisms, in Modelling in Combustion Science, Buckmaster J., Takeno T. (eds), Springer, Berlin, pp. 130-147. [Google Scholar]
  • Chelliah H.K., Makino A., Kato I., Arki N., Law CK. (1996) Modeling of graphite oxidation in a stagnation-point flow field using detailed homogeneous and semiglobal heterogeneous mechanisms with comparisons to experiments, Combust. Flame. 104, 469-480. [CrossRef] [Google Scholar]
  • Sundaresan S., Amundson N.R. (1980) Diffusion and reaction in a stagnant boundary layer about a carbon particle. 5. Pseudo-steady-state structure and parameter sensitivity, Ind. Eng. Chem. Fundam. 19, 344-351. [CrossRef] [Google Scholar]
  • Tomboulides A.G., Lee J.C.Y., Orszag S.A. (1997) Numerical simulation of low Mach number reactive flows, J. Sci. Comput. 12, 139-167. [CrossRef] [Google Scholar]
  • Bathia S.K., Perlmutter D.D. (1980) A Random pore model for fluid-solid reactions: I. Isothermal, kinetic control, AIChE J. 26, 379-386. [CrossRef] [Google Scholar]
  • Everson R., Neomagus H., Kaitano R. (2005) The modeling of the combustion of high-ash coal-char particles suitable for pressurised fluidized bed combustion: shrinking reacted core model, Fuel 84, 1136-1143. [CrossRef] [Google Scholar]
  • Ahmed I.I., Gupta A.K. (2011) Particle size, porosity and temperature effects on char conversion, Appl. Energy 88, 4667-4677. [CrossRef] [Google Scholar]
  • Wittig K., Golia A., Nikrityuk P.A. (2012) 3D Numerical study of the influence of particle porosity on the heat and fluid flow, Prog. Comput. Fluid Dynam. 12, 207-219. [Google Scholar]
  • Kee R.J., Coltrin M.E., Glarborg P. (2003) Chemically Reacting Flow, Wiley-Interscience, New York. [Google Scholar]
  • Caram H.S., Amundson N.R. (1977) Diffusion and reaction in a stagnant boundary layer about a carbon particle, Ind. Eng. Chem. Fundam. 16, 171-181. [CrossRef] [Google Scholar]
  • Libby P.A., Blake Th.R. (1981) Burning carbon particles in the presence of water vapor, Combust. Flame 41, 123-147. [CrossRef] [Google Scholar]
  • Jones W.P., Lindstedt R.P. (1988) Global reaction schemes for hydrocarbon combustion, Combust. Flame 73, 233-249. [CrossRef] [Google Scholar]
  • McBride B.J., Gordon S., Reno M.A. (1993) Coefficients for calculating thermodynamic and transport properties of individual species, NASA Technical Memorandum 4513. [Google Scholar]
  • ANSYS-FLUENT V 13.0 – Commercially available CFD software package based on the Finite Volume method. Southpointe, 75 Technology Drive, Canonsburg, PA 15317, USA, www.ansys.com (2011). [Google Scholar]
  • de Souza-Santos M.L. (2010) Solid Fuels Combustion and Gasification, 2nd ed., CRC Press, 6000 Broken Sound Parkway NW, Suite 300. [Google Scholar]
  • Ranz W.E., Marshall W.R. (1952) Evaporation of drops, Chem Eng. Proc. 48, 173-180. [Google Scholar]
  • Schmidt R., Nikrityuk P.A. (2012) Numerical simulation of the transient temperature distribution inside moving particles, Can. J. Chem. Eng. 90, 246-262. [CrossRef] [Google Scholar]
  • Patankar S.V. (1980) Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing, Corp., Washington, DC. [Google Scholar]
  • Leonard B.P. (1979) A stable and accurate convection modeling procedure based on quadratic up-stream interpolation, Comp. Meth. Appl. Mech. Eng. 19, 59-68. [CrossRef] [Google Scholar]
  • Richter A., Nikrityuk P. (2012) Three-dimensional calculation of a chemically reacting coal-particle agglomerate moving in hot air. 9th European Conference on Coal Research and its Applications: ECCRIA 9, University of Nottingham, UK, 10-12 Sept. [Google Scholar]
  • Raghavan V., Babu V., Sundararajan T., Natarajan R. (2005) Flame shapes and burning rates of spherical fuel particles in a mixed convective environment, Int. J. Heat Mass Trans. 48, 5354-5370. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.