IFP Energies nouvelles International Conference: MAPI 2012: Multiscale Approaches for Process Innovation
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Numéro 6, November-December 2013
IFP Energies nouvelles International Conference: MAPI 2012: Multiscale Approaches for Process Innovation
Page(s) 995 - 1005
DOI https://doi.org/10.2516/ogst/2013123
Publié en ligne 20 septembre 2013
  • Epling W.S., Campbell L.E., Yezerets A., Currier N.W., Parks J.E. (2004) Overview of the Fundamental Reactions and Degradation Mechanisms of NOx Storage/Reduction Catalysts, Catal. Rev. Sci. Eng. 46, 163-245. [CrossRef] [Google Scholar]
  • Roy S., Baiker A. (2009) NOx Storage-Reduction Catalysis: From Mechanism and Materials Properties to Storage-Reduction Performance, Chem. Rev. 109, 4054-4091. [CrossRef] [PubMed] [Google Scholar]
  • Granger P., Parvulescu V.I. (2011) Catalytic NOx Abatement Systems for Mobile Sources: From Three-Way to Lean Burn after-Treatment Technologies, Chem. Rev. 111, 3155-3207. [CrossRef] [PubMed] [Google Scholar]
  • Poulston S., Rajaram R.R. (2003) Regeneration of NOx trap catalysts, Catal. Today 81, 4, 603-610. [CrossRef] [Google Scholar]
  • Sedlmair C, Seshan K., Jentys A., Lercher J.A. (2002) Studies on the deactivation of NOx storage-reduction catalysts by sulfur dioxide, Catal. Today 75, 1-4, 413-419. [CrossRef] [Google Scholar]
  • Dementhon J.B., Colliou T., Martin B., Bouchez M., Guyon M., Messaoudi I., Noirot R., Michon S., Gérenet C., Pierron L. (2003) Application of NOx Adsorber to Diesel Depollution: Performances and Durability, Oil & Gas Sciemce and Technology — Rev. IFP 58, 129-149. [CrossRef] [EDP Sciences] [Google Scholar]
  • Malpartida I., Larrubia-Vargas M.A., Alemany L.J., Finocchio E., Busca G. (2008) Pt—Ba—Al203 for NOx storage and reduction: Characterization of the dispersed species, Appl. Catal. B: Env. 80, 3-4, 214-225. [CrossRef] [Google Scholar]
  • Breen J.P., Marella M., Pistarino C., Ross J.R.H. (2002) Sulfur-tolerant NOx storage traps: an infrared and thermodynamic study of the reactions of alkali and alkaline-earth metal sulfates, Catal. Lett. 80, 123-128. [CrossRef] [Google Scholar]
  • Engstrom P., Amberntsson A., Skoglundh M., Fridell E., Smedler G. (1999) Sulphur dioxide interaction with NOx storage catalysts, Appl. Catal. B: Env. 22, 4, L241-L248. [CrossRef] [Google Scholar]
  • Dawody J., Skoglundh M., Olsson L., Fridell E. (2005) Sulfur deactivation of Pt/SiO2, Pt/BaO/Al203, and BaO/Al203 NOx storage catalysts: Influence of SO2 exposure conditions, J. Catal. 234, 1, 206-218. [CrossRef] [Google Scholar]
  • Mahzoul H., Limousy L., Brilhac J.F., Gilot P. (2000) Experimental study of SO2 adsorption on barium-based NOx adsorbers, J. Anal. Appl. Pyrolysis 56, 2, 179-193. [CrossRef] [Google Scholar]
  • Kim D.H., Szanyi J., Kwak J.H., Szailer T., Hanson J., Wang C.M., Peden C.H.F. (2006) Effect of Barium Loading on the Desulfation of Pt-BaO/Al2O3 Studied by H2 TPRX, TEM, Sulfur K-edge XANES, and in Situ TRXRD, J. Phys. Chem. B 110, 21, 10441-10448. [CrossRef] [PubMed] [Google Scholar]
  • Luo J.-Y., Kisinger D., Abedi A., Epling W.S. (2010) Sulfur release from a model Pt/Ba/Al2O3 Diesel oxidation catalyst: Temperature-programmed and step-reponse techniques characterization, Appl. Catal. A: Gen. 383, 182-191. [CrossRef] [Google Scholar]
  • Parks J., Huff S., Pihl J., Choi J.-S., West B. (2005) Nitrogen Selectivity in Lean NOx Trap Catalysis with Diesel Engine In-Cylinder Regeneration, SAE Technical Paper 2005-01-3876. [Google Scholar]
  • Rohr F., Gobel U., Kattwinkel P., Kreuzer T., Muller W., Philipp S., Gélin P. (2007) New insight into the interaction of sulfur with Diesel NOx storage catalysts, Appl. Catal. B: Env. 70, 1-4, 189-197. [CrossRef] [Google Scholar]
  • Ji Y., Easterling V., Graham U, Fisk C., Crocker M., Choi J.-S. (2011) Effect of aging on the NOx storage and regeneration characteristics of fully formulated lean NOx trap catalysts, Appl. Catal. B: Env. 103, 3-4, 413-427. [Google Scholar]
  • Szailer T., Kwak J.H., Kim D.H., Szanyi J., Wang C., Peden C.H.F. (2006) Effecs of Ba loading and calcination temperature on BaAl2O4 formation for BaO/Al203 NOx storage and reduction catalysts, Catal. Today 114, 86-93. [CrossRef] [Google Scholar]
  • Elbouazzaoui S., Corbos E.C., Courtois X., Marecot P., Duprez D. (2005) A study of the deactivation by sulfur and regeneration of a model NSR Pt/Ba/Al2O3 catalyst, Appl. Catal. B: Env. 61, 3-4, 236-243. [CrossRef] [Google Scholar]
  • Pacchioni G., Ricart J.M., Illas F. (1994) Ab Initio Cluster Model Calculations on the Chemisorption of CO2 and SO2 Probe Molecules on MgO and CaO (100) Surfaces. A Theoretical Measure of Oxide Basicity, J. Am. Chem. Soc. 116, 22,10152-10158. [CrossRef] [Google Scholar]
  • Schneider W.F. (2004) Qualitative Differences in the Adsorption Chemistry of Acidic (CO2, SOx) and Amphiphilic (NOx) Species on the Alkaline Earth Oxides, J. Phys. Chem. B 108, 1, 273-282. [CrossRef] [Google Scholar]
  • Schneider W.F., Li J., Hass K.C. (2001) Combined Computational and Experimental Investigation of SO, Adsorption on MgO, J. Phys. Chem. B 105, 29, 6972-6979. [CrossRef] [Google Scholar]
  • Karlsen E.J., Nygren M.A., Pettersson L.G.M. (2003) Comparative Study on Structures and Energetics of NOx SOx, , and COx, Adsorption on Alkaline-Earth Metal Oxides, J. Phys. Chem. B 107, 31, 7795-7802. [CrossRef] [Google Scholar]
  • Rankovic N., Chizallet C., Nicolle A., Da Costa P. (2012) A molecular approach for unraveling surface phase transition: sulfation of BaO as a model NOx trap, Chem. Eur. J. 18, 10511-10514. [CrossRef] [Google Scholar]
  • Dawody J., Skoglundh M., Olsson L., Fridell E. (2007) Kinetic modelling of sulfur deactivation of Pt/BaO/Al2O3 and BaO/Al2O3 NOx storage catalysts, Appl. Catal. B: Env. 70, 1-4, 179-188. [CrossRef] [Google Scholar]
  • Olsson L., Fredriksson M., Blint R.J. (2010) Kinetic modeling of sulfur poisoning and regeneration of lean NOx) traps, Appl. Catal. B: Env. 100, 1-2, 31-41. [CrossRef] [Google Scholar]
  • Salciccioli M., Stamatakis M., Caratzoulas S., Vlachos D. G. (2011) A review of multiscale modeling of metal- catalyzed reactions: Mechanism development for complexity and emergent behavior, Chem. Eng. Sci. 66, 4319-4355. [CrossRef] [Google Scholar]
  • Perdew J.P., Wang Y. (1992) Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45, 23, 13244-13249. [NASA ADS] [CrossRef] [Google Scholar]
  • Kresse G., Hafner J. (1994) Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Phys. Rev. B 49, 20, 14251-14269. [Google Scholar]
  • Kresse G., Furthmüller J. (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6, 1, 15-50. [Google Scholar]
  • Kresse G., Joubert D. (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 3, 1758-1775. [Google Scholar]
  • Koop J., Deutschmann O. (2009) Detailed surface reaction mechanism for Pt-catalyzed abatement of automotive exhaust gases, Appl. Catal. B: Env. 91, 1-2, 47-58. [CrossRef] [Google Scholar]
  • Thormann J., Maier L., Pfeifer P., Kunz U., Deutschmann O., Schubert K. (2009) Steam reforming of hexadecane over a Rh/CeO2 catalyst in microchannels: Experimental and numerical investigation, Int. J. Hydrogen Energy 34, 12, 5108-5120. [CrossRef] [Google Scholar]
  • Mhadeshwar A.B., Wang H., Vlachos D.G. (2003) Ther modynamic Consistency in Microkinetic Development of Surface Reaction Mechanisms, J. Phys. Chem. B 107, 12721-12733. [CrossRef] [Google Scholar]
  • Paynter H.M. (1961) Analysis and Design of Engineering Systems, MIT Press. [Google Scholar]
  • Mauviot G., Le Berr F., Raux S., Perretti F., Malbec L.M., Millet C.N. (2009) OD Modelling: a Promising Means for Aftertreatment Issues in Modern Automotive Applications, Oil & Gas Sciemce and Technology — Rev. IFP 64, 285-307. [CrossRef] [EDP Sciences] [Google Scholar]
  • Rankovic N., Nicolle A., Da Costa P. (2010) Detailed Kinetic Modeling Study of NOx Oxidation and Storage and their Interactions over Pt/Ba/Al2O3 Monolith Catalysts, J. Phys. Chem. C 114, 7102-7111. [CrossRef] [Google Scholar]
  • Rankovic N., Nicolle A., Berthout D., Da Costa P. (2010) Extension of a kinetic model for NO oxidation and NOx storage to fixed-bed Pt/Ba/Al2O3 catalysts, Catal. Commun. 12, 1, 54-57. [CrossRef] [Google Scholar]
  • Rankovic N., Nicolle A., Berthout D., Da Costa P. (2011) Kinetic modeling study of the oxidation of carbon monoxide — hydrogen mixtures over Pt/Al2O3 and Rh/ Al2O3 catalysts, J. Phys. Chem. C 115, 20225-20236. [CrossRef] [Google Scholar]
  • Tuttlies U., Schmeisser V., Eigenberger G. (2004) A mechanistic simulation model for NOx storage catalyst dynamics, Chem. Eng. Sci. 59, 4731-4738. [CrossRef] [Google Scholar]
  • Stephen Whitaker (1986) Flow in Porous Media I: A theoretical derivation of Darcy’s law, Transport Porous Med. 1, 3-25. [Google Scholar]
  • Scotti A., Nova I., Tronconi E., Castoldi L., Lietti L., Forzatti P. (2004) Kinetic Study of Lean NOx Storage over the Pt-Ba/Al2O3 System, Ind. Eng. Chem. Res. 43, 4522-4534. [CrossRef] [Google Scholar]
  • Dumesic J.A., Rudd D.F., Aparicio L.M., Rekoske J.E., Trevino A.A. (1993) The Micokinetics of Heterogeneous Catalysis, American Chemical Society, Washington, DC. [Google Scholar]
  • Fuentealba P., Savin A. (2000) Electronic Structure and Bonding in the Ground State of Alkaline-Earth-Metal Monoxides and Carbides, J. Phys. Chem. A 104, 10882-10886. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.