Dossier: InMoTher 2012 - Industrial Use of Molecular Thermodynamics
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 2, March-April 2013
Dossier: InMoTher 2012 - Industrial Use of Molecular Thermodynamics
Page(s) 299 - 307
DOI https://doi.org/10.2516/ogst/2012042
Published online 05 April 2013
  • Pascual P., Ungerer P., Tavitian B., Pernot P., Boutin A. (2003) Development of a Transferable Guest-host Force Field for Adsorption of Hydrocarbons in Zeolites I. Reinvestigation of Alkane Adsorption in Silicalite by Grand Canonical Monte Carlo Simulation, Phys. Chem. Chem. Phys. 5, 17, 3684-3693. [CrossRef] [Google Scholar]
  • Wender A., Barreau A., Lefebvre C., Di Lella A., Boutin A., Ungerer P., Fuchs A.H. (2007) Adsorption of n-Alkanes in Faujasite Zeolites: Molecular Simulation Study and Experimental Measurements, Adsorption 13, 5-6, 439-451. [CrossRef] [Google Scholar]
  • Watanabe T., Manz T.A., Sholl D.S. (2011) Accurate Treatment of Electrostatics during Molecular Adsorption in Nanoporous Crystals without Assigning Point Charges to Framework Atoms, J. Phys. Chem. C 115, 11, 4824-4836. [CrossRef] [Google Scholar]
  • Li S., Fan C.Q. (2010) High-Flux SAPO-34 Membrane for CO2/N2 Separation, Ind. Eng. Chem. Res. 49, 9, 4399-4404. [CrossRef] [Google Scholar]
  • Mazumder S., Van Hemert P., Busch A., Wolf K.-H.A.A., Tejera-Cuesta P. (2006) Flue Gas and Pure CO2 Sorption Properties of Coal: A Comparative Study, Int. J. Coal Geol. 67, 267-279. [CrossRef] [Google Scholar]
  • Roux M., Marichal C., Le Meins J.-M., Baerlocher C., Chézeau J.-M. (2003) Solid State NMR and X-ray Diffraction Study of Three Forms of the Aluminophosphate AlPO4-ZON, Micropor. Mesopor. Mater. 63, 1-3, 163-176. [CrossRef] [Google Scholar]
  • Bailly A., Amoureux J.P., Wiench J.W., Pruski M. (2001) Structural Analysis of ZON-Type Aluminophosphates by Solid State NMR, J. Phys. Chem. B 105, 4, 773-776. [CrossRef] [Google Scholar]
  • MOPAC2009, Stewart J.J.P., Stewart Computational Chemistry, Colorado Springs, CO, USA, http://OpenMOPAC.net (2008). [Google Scholar]
  • Kresse G., Furthmüller J. (1993) Ab Initio Molecular Dynamics for Liquid Metals, Phys. Rev. B 47, 1, 558-561. [Google Scholar]
  • Kresse G., Furthmüller J. (1996) Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set, Comput. Mater. Sci. 6, 1, 15-50. [Google Scholar]
  • Perdew J.P., Burke K., Ernzerhof M. (1996) Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 18, 3865-3868. [Google Scholar]
  • Perdew J.P., Burke K., Ernzerhof M. (1997) Errata: Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)], Phys. Rev. Lett. 78, 7, 1396. [Google Scholar]
  • Blöchl P.E. (1994) Projector Augmented-Wave Method, Phys. Rev. B 50, 24, 17953-17979. [Google Scholar]
  • Kresse G., Joubert J. (1999) From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, Phys. Rev. B 59, 3, 1758-1775. [Google Scholar]
  • MedeA-Gibbs: Gibbs Licence IFPEN-CNRS-Université Paris- Sud. [Google Scholar]
  • MedeA: Materials Exploration and Design Analysis. Copyright©1998-2012 Materials Design, Inc. [Google Scholar]
  • Boutard Y., Ungerer P., Teuleur J.-M., Ahunbay M.G., Sabater S.F., Pérez-Pellitero J., Mackie A.D., Bourasseau E. (2005) Extension of the Anisotropic United Atoms Intermolecular Potential to Amines, Amides and Alkanols: Application to the Problems of the 2004 Fluid Simulation Challenge, Fluid Phase Equilib. 236, 1-2, 25-41. N2:dNN = 109.8 pm, dNX = 54.90 pm, qN = − 0.5075, qX = 1.015; CO2: dCO = 114.9 pm, qC = 0.6512, qO = − 0.3256. [CrossRef] [Google Scholar]
  • Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. (1983) Comparison of Simple Potential Functions for Simulating Liquid Water, J. Chem. Phys. 79, 2, 926-935. H2O: dOH = 95.72 pm, aHOH = 104.52°, qO = −0.834, qH = 0.417. [NASA ADS] [CrossRef] [Google Scholar]
  • Chen L.-F., Soriano A.N., Li M.-H. (2009) Vapour Pressures and Densities of the Mixed-Solvent Dessicants (Glycols + Water + Salts), J. Chem. Thermodyn. 41, 6, 724-730. [CrossRef] [Google Scholar]
  • Bezus A.G., Kiselev A.V., Lopatkin A.A., Du P.Q. (1978) Molecular Statistical Calculation of the Thermodynamic Adsorption Characteristics of Zeolites Using the Atom-Atom Approximation. Part 1.-Adsorption of Methane by Zeolite NaX, J. Chem. Soc., Faraday Trans. 2 74, 367-379. [CrossRef] [Google Scholar]
  • Lachet V., Boutin A., Pellenq R.J.-M., Nicholson D., Fuchs A.H. (1996) Molecular Simulation Study of the Structural Rearrangement of Methane Adsorbed in Aluminophosphate AlPO4-5, J. Phys. Chem. 100, 21, 9006-9013. qAl = 1.60, qP = 2.00, qO = −0.90. [CrossRef] [Google Scholar]
  • Di Lella A., Desbiens N., Boutin A., Demachy I., Ungerer P., Bellat J.-P., Fuchs A.H. (2006) Molecular Simulation Studies of Water Physisorption in Zeolites, Phys. Chem. Chem. Phys. 8, 46, 5396-5406. [CrossRef] [PubMed] [Google Scholar]
  • Puibasset J., Pellenq R.J.-M. (2008) Grand Canonical Monte Carlo Simulation Study of Water Adsorption in Silicalite at 300 K, J. Phys. Chem. B 112, 20, 6390-6397. qSi = 2.0, qO = −1.00. [CrossRef] [PubMed] [Google Scholar]
  • Panagiotopoulos A. (1987) Direct Determination of Phase Coexistence Properties of Fluids by Monte Carlo Simulation in a New Ensemble, Mol. Phys. 61, 4, 813-827. [Google Scholar]
  • Smit B., Karaborni S., Siepmann J.I. (1995) Computer Simulations of Vapor-Liquid Equilibria of n-Alkanes, J. Chem. Phys. 102, 5, 2126-2140. [Google Scholar]
  • Darden T., York D., Pederson L. (1993) Particle Mesh Ewald: An N-log(N) Method for Ewald Sums in Large Systems, J. Chem. Phys. 98, 12, 10089-10092. [CrossRef] [Google Scholar]
  • Desbiens N., Demachy I., Fuchs A.H., Kirsch-Rodeschini H., Soulard M., Patarin J. (2005) Water Condensation in Hydrophobic Nanopores, Angew. Chem. Int. Ed. 44, 33, 5310-5313. [CrossRef] [Google Scholar]
  • Abrioux C., Coasne B., Maurin G., Henn F., Jeffroy M., Boutin A. (2009) Cation Behavior in Faujasite Zeolites upon Water Adsorption: A combination of Monte Carlo and Molecular Dynamics Simulations, J. Phys. Chem. C 113, 24, 10696-10705. [CrossRef] [Google Scholar]
  • Martín-Calvo A., Lahoz-Martín F.D., Calero S. (2012) Understanding Carbon Monoxide Capture Using Metal-Organic Frameworks, J. Phys. Chem. C 116, 11, 6655-6663. [CrossRef] [Google Scholar]
  • Dunne J.A., Mariwala R., Rao M., Sircar S., Gorte R.J., Myers A.L. (1996) Calorimetric Heats of Adsorption and Adsorption Isotherms. 1. O2, N2, Ar, CO2, CH4, C2H6 and SF6 on Silicalite, Langmuir 12, 24, 5888-5895. [CrossRef] [Google Scholar]
  • Miller M.B., Chen D.-L., Xie H.-B., Luebke D.R., Johnson J.K., Enick R.M. (2009) Solubility of CO2 in CO2-philic oligomers: COSMOtherm Predictions and Experimental Results, Fluid Phase Equilib. 287, 1, 26-32. [CrossRef] [Google Scholar]
  • Weitkamp J., Puppe L. (1999) Catalysis and Zeolites: Fundamentals and Applications, Springer, New York, 1999. [Google Scholar]
  • Koros W.J., Fleming G.K. (1993) Membrane-Based Gas Separation, J. Membr. Sci. 83, 1, 1-80. [CrossRef] [Google Scholar]
  • Caro J., Noack M., Koelsch P., Schaefer R. (2000) Zeolite Membranes – State of their Development and Perspective, Micropor. Mesopor. Mater. 38, 1, 3-24. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.