Dossier: InMoTher 2012 - Industrial Use of Molecular Thermodynamics
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 2, March-April 2013
Dossier: InMoTher 2012 - Industrial Use of Molecular Thermodynamics
Page(s) 299 - 307
Published online 05 April 2013
  • Pascual P., Ungerer P., Tavitian B., Pernot P., Boutin A. (2003) Development of a Transferable Guest-host Force Field for Adsorption of Hydrocarbons in Zeolites I. Reinvestigation of Alkane Adsorption in Silicalite by Grand Canonical Monte Carlo Simulation, Phys. Chem. Chem. Phys. 5, 17, 3684-3693. [CrossRef]
  • Wender A., Barreau A., Lefebvre C., Di Lella A., Boutin A., Ungerer P., Fuchs A.H. (2007) Adsorption of n-Alkanes in Faujasite Zeolites: Molecular Simulation Study and Experimental Measurements, Adsorption 13, 5-6, 439-451. [CrossRef]
  • Watanabe T., Manz T.A., Sholl D.S. (2011) Accurate Treatment of Electrostatics during Molecular Adsorption in Nanoporous Crystals without Assigning Point Charges to Framework Atoms, J. Phys. Chem. C 115, 11, 4824-4836. [CrossRef]
  • Li S., Fan C.Q. (2010) High-Flux SAPO-34 Membrane for CO2/N2 Separation, Ind. Eng. Chem. Res. 49, 9, 4399-4404. [CrossRef]
  • Mazumder S., Van Hemert P., Busch A., Wolf K.-H.A.A., Tejera-Cuesta P. (2006) Flue Gas and Pure CO2 Sorption Properties of Coal: A Comparative Study, Int. J. Coal Geol. 67, 267-279. [CrossRef]
  • Roux M., Marichal C., Le Meins J.-M., Baerlocher C., Chézeau J.-M. (2003) Solid State NMR and X-ray Diffraction Study of Three Forms of the Aluminophosphate AlPO4-ZON, Micropor. Mesopor. Mater. 63, 1-3, 163-176. [CrossRef]
  • Bailly A., Amoureux J.P., Wiench J.W., Pruski M. (2001) Structural Analysis of ZON-Type Aluminophosphates by Solid State NMR, J. Phys. Chem. B 105, 4, 773-776. [CrossRef]
  • MOPAC2009, Stewart J.J.P., Stewart Computational Chemistry, Colorado Springs, CO, USA, (2008).
  • Kresse G., Furthmüller J. (1993) Ab Initio Molecular Dynamics for Liquid Metals, Phys. Rev. B 47, 1, 558-561. [CrossRef]
  • Kresse G., Furthmüller J. (1996) Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set, Comput. Mater. Sci. 6, 1, 15-50. [CrossRef] [MathSciNet]
  • Perdew J.P., Burke K., Ernzerhof M. (1996) Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 18, 3865-3868. [NASA ADS] [CrossRef] [PubMed]
  • Perdew J.P., Burke K., Ernzerhof M. (1997) Errata: Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)], Phys. Rev. Lett. 78, 7, 1396. [NASA ADS] [CrossRef]
  • Blöchl P.E. (1994) Projector Augmented-Wave Method, Phys. Rev. B 50, 24, 17953-17979. [NASA ADS] [CrossRef]
  • Kresse G., Joubert J. (1999) From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, Phys. Rev. B 59, 3, 1758-1775. [NASA ADS] [CrossRef]
  • MedeA-Gibbs: Gibbs Licence IFPEN-CNRS-Université Paris- Sud.
  • MedeA: Materials Exploration and Design Analysis. Copyright©1998-2012 Materials Design, Inc.
  • Boutard Y., Ungerer P., Teuleur J.-M., Ahunbay M.G., Sabater S.F., Pérez-Pellitero J., Mackie A.D., Bourasseau E. (2005) Extension of the Anisotropic United Atoms Intermolecular Potential to Amines, Amides and Alkanols: Application to the Problems of the 2004 Fluid Simulation Challenge, Fluid Phase Equilib. 236, 1-2, 25-41. N2:dNN = 109.8 pm, dNX = 54.90 pm, qN = − 0.5075, qX = 1.015; CO2: dCO = 114.9 pm, qC = 0.6512, qO = − 0.3256. [CrossRef]
  • Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. (1983) Comparison of Simple Potential Functions for Simulating Liquid Water, J. Chem. Phys. 79, 2, 926-935. H2O: dOH = 95.72 pm, aHOH = 104.52°, qO = −0.834, qH = 0.417. [NASA ADS] [CrossRef]
  • Chen L.-F., Soriano A.N., Li M.-H. (2009) Vapour Pressures and Densities of the Mixed-Solvent Dessicants (Glycols + Water + Salts), J. Chem. Thermodyn. 41, 6, 724-730. [CrossRef]
  • Bezus A.G., Kiselev A.V., Lopatkin A.A., Du P.Q. (1978) Molecular Statistical Calculation of the Thermodynamic Adsorption Characteristics of Zeolites Using the Atom-Atom Approximation. Part 1.-Adsorption of Methane by Zeolite NaX, J. Chem. Soc., Faraday Trans. 2 74, 367-379. [CrossRef]
  • Lachet V., Boutin A., Pellenq R.J.-M., Nicholson D., Fuchs A.H. (1996) Molecular Simulation Study of the Structural Rearrangement of Methane Adsorbed in Aluminophosphate AlPO4-5, J. Phys. Chem. 100, 21, 9006-9013. qAl = 1.60, qP = 2.00, qO = −0.90. [CrossRef]
  • Di Lella A., Desbiens N., Boutin A., Demachy I., Ungerer P., Bellat J.-P., Fuchs A.H. (2006) Molecular Simulation Studies of Water Physisorption in Zeolites, Phys. Chem. Chem. Phys. 8, 46, 5396-5406. [CrossRef] [PubMed]
  • Puibasset J., Pellenq R.J.-M. (2008) Grand Canonical Monte Carlo Simulation Study of Water Adsorption in Silicalite at 300 K, J. Phys. Chem. B 112, 20, 6390-6397. qSi = 2.0, qO = −1.00. [CrossRef] [PubMed]
  • Panagiotopoulos A. (1987) Direct Determination of Phase Coexistence Properties of Fluids by Monte Carlo Simulation in a New Ensemble, Mol. Phys. 61, 4, 813-827. [CrossRef]
  • Smit B., Karaborni S., Siepmann J.I. (1995) Computer Simulations of Vapor-Liquid Equilibria of n-Alkanes, J. Chem. Phys. 102, 5, 2126-2140. [CrossRef]
  • Darden T., York D., Pederson L. (1993) Particle Mesh Ewald: An N-log(N) Method for Ewald Sums in Large Systems, J. Chem. Phys. 98, 12, 10089-10092. [CrossRef]
  • Desbiens N., Demachy I., Fuchs A.H., Kirsch-Rodeschini H., Soulard M., Patarin J. (2005) Water Condensation in Hydrophobic Nanopores, Angew. Chem. Int. Ed. 44, 33, 5310-5313. [CrossRef]
  • Abrioux C., Coasne B., Maurin G., Henn F., Jeffroy M., Boutin A. (2009) Cation Behavior in Faujasite Zeolites upon Water Adsorption: A combination of Monte Carlo and Molecular Dynamics Simulations, J. Phys. Chem. C 113, 24, 10696-10705. [CrossRef]
  • Martín-Calvo A., Lahoz-Martín F.D., Calero S. (2012) Understanding Carbon Monoxide Capture Using Metal-Organic Frameworks, J. Phys. Chem. C 116, 11, 6655-6663. [CrossRef]
  • Dunne J.A., Mariwala R., Rao M., Sircar S., Gorte R.J., Myers A.L. (1996) Calorimetric Heats of Adsorption and Adsorption Isotherms. 1. O2, N2, Ar, CO2, CH4, C2H6 and SF6 on Silicalite, Langmuir 12, 24, 5888-5895. [CrossRef]
  • Miller M.B., Chen D.-L., Xie H.-B., Luebke D.R., Johnson J.K., Enick R.M. (2009) Solubility of CO2 in CO2-philic oligomers: COSMOtherm Predictions and Experimental Results, Fluid Phase Equilib. 287, 1, 26-32. [CrossRef]
  • Weitkamp J., Puppe L. (1999) Catalysis and Zeolites: Fundamentals and Applications, Springer, New York, 1999.
  • Koros W.J., Fleming G.K. (1993) Membrane-Based Gas Separation, J. Membr. Sci. 83, 1, 1-80. [CrossRef]
  • Caro J., Noack M., Koelsch P., Schaefer R. (2000) Zeolite Membranes – State of their Development and Perspective, Micropor. Mesopor. Mater. 38, 1, 3-24. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.