Dossier: InMoTher 2012 - Industrial Use of Molecular Thermodynamics
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 68, Number 2, March-April 2013
Dossier: InMoTher 2012 - Industrial Use of Molecular Thermodynamics
Page(s) 309 - 318
DOI https://doi.org/10.2516/ogst/2012047
Published online 04 March 2013
  • Cushman J.H. (1997) The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles, Kluwer Academic Publishers, London. [Google Scholar]
  • Guéguen Y., Palciauskas V. (1994) Introduction to the physics of rock, University Press, Princeton. [Google Scholar]
  • Gregg S.J., Sing K.S.W. (1982) Adsorption, Surface Area and Porosimetry, Academic Press, New York. [Google Scholar]
  • Rouquerol F., Rouquerol J., Sing K.S.W. (1999) Adsorption by Powders and Porous Solids, Academic Press, London. [Google Scholar]
  • Zsigmondy R. (1911) Über die Struktur des Gels der Kieselsäure. Theorie der Entwässerung, Z. Anorg. Allg. Chem. 71, 356. [CrossRef] [Google Scholar]
  • Cohan L.H. (1938) Sorption hysteresis and the vapor pressure of concave surfaces, J. Am. Chem. Soc. 60, 433-435. [CrossRef] [Google Scholar]
  • Coasne B., Grosman A., Ortega C., Simon M. (2002) Adsorption in noninterconnected pores open at one or at both ends: A reconsideration of the origin of the hysteresis phenomenon, Phys. Rev. Lett. 88, 256102. [CrossRef] [PubMed] [Google Scholar]
  • Grosman A., Ortega C. (2005) Nature of capillary condensation and evaporation processes in ordered porous materials, Langmuir 21, 10515-10521. [CrossRef] [PubMed] [Google Scholar]
  • Everett D.H., Whitton W.I. (1952) A general approach to hysteresis, Trans. Faraday Soc. 48, 749. [CrossRef] [Google Scholar]
  • Everett D.H., Smith F.W. (1954) A general approach to hysteresis. Part 2: Development of the domain theory, Trans. Faraday Soc. 50, 187. [CrossRef] [Google Scholar]
  • Everett D.H. (1954) A general approach to hysteresis. Part 3: Formal treatment of the independent domain model of hysteresis, Trans. Faraday Soc. 50, 1077. [CrossRef] [Google Scholar]
  • Mason G. (1982) The effect of pore space connectivity on the hysteresis of capillary condensation in adsorption desorption isotherms, J. Colloid Interface Sci. 88, 36-46. [CrossRef] [Google Scholar]
  • Mason G. (1983) A model of adsorption-desorption hysteresis in which hysteresis is primarily developed by the interconnections in a network of pores, Proc. R. Soc. Lond. A 390, 47-72. [Google Scholar]
  • Swift M.R., Cheng E., Cole M.W., Banavar J.R. (1993) Phase transitions in a model porous medium, Phys. Rev. B 48, 3124. [CrossRef] [Google Scholar]
  • Kierlik E., Rosinberg M.L., Tarjus G., Viot P. (2001) Equilibrium and out-of-equilibrium (hysteretic) behavior of fluids in disordered porous materials: Theoretical predictions, Phys. Chem. Chem. Phys. 3, 1201-1206. [CrossRef] [Google Scholar]
  • Kierlik E., Monson P.A., Rosinberg M.L. et al. (2001) Capillary condensation in disordered porous materials: Hysteresis versus equilibrium behavior, Phys. Rev. Lett. 87, 055701. [CrossRef] [PubMed] [Google Scholar]
  • Detcheverry F., Kierlik E., Rosinberg M.L., Tarjus G. (2003) Local mean-field study of capillary condensation in silica aerogels, Phys. Rev. E 68, 061504. [CrossRef] [Google Scholar]
  • Detcheverry F., Kierlik E., Rosinberg M.L., Tarjus G. (2006) Gas adsorption and desorption in silica aerogels: a theoretical study of scattering properties, Phys. Rev. E 73, 041511. [CrossRef] [Google Scholar]
  • Beck J.S., Vartuli J.C., Roth W.J. et al. (1992) A new family of mesoporous molecular sieves prepared with liquid cristal templates, J. Am. Chem. Soc. 114, 10834-10843. [CrossRef] [Google Scholar]
  • Kresge C.T., Leonowicz M.E., Roth W.J. et al. (1992) Nature 359, 710-712. [CrossRef] [Google Scholar]
  • Uhlir A. (1956) Electrolytic shaping of germanium and silicon, Bell Syst. Tech. J. 35, 333-347. [Google Scholar]
  • Maddox M.W., Olivier J.P., Gubbins K.E. (1997) Characterization of MCM-41 using molecular simulation: heterogeneity effects, Langmuir 13, 1737-1745. [CrossRef] [Google Scholar]
  • Edler K.J., Reynolds P.A., White J.W. (1998) Small-angle neutron scattering studies on the mesoporous molecular sieve MCM-41, J. Phys. Chem. B 102, 3676-3683. [CrossRef] [Google Scholar]
  • Berenguer-Murcia A., Garcia-Martinez J., Cazorla-Amoros D. et al. (2002) in Studies in Surface Science and Catalysis, Rodriguez Reinoso F., McEnaney B., Rouquerol J., Unger K. (eds), Elsevier Science, Amsterdam, Vol. 144, pp. 83-90. [Google Scholar]
  • Fenelonov V.B., Derevyankin A.Y., Kirik S.D. et al. (2001) Comparative textural study of highly ordered silicate and aluminosilicate mesoporous mesophase materials having different pore sizes, Micropor. Mesopor. Mater. 44-45, 33-40. [CrossRef] [Google Scholar]
  • Sonwane C.G., Jones C.W., Ludovice P.J. (2005) A model for the structure of MCM-41 incorporating surface roughness, J. Phys. Chem. B 109, 23395-23404. [CrossRef] [PubMed] [Google Scholar]
  • Puibasset J. (2005) Grand potential, Helmholtz free energy and entropy calculation in heterogeneous cylindrical pores by the grand canonical Monte Carlo simulation method, J. Phys. Chem. B 109, 480-487. [CrossRef] [PubMed] [Google Scholar]
  • Puibasset J. (2005) Phase coexistence in heterogeneous porous media: A new extension to Gibbs Ensemble monte carlo simulation method, J. Chem. Phys. 122, 134710. [CrossRef] [PubMed] [Google Scholar]
  • Puibasset J. (2005) Capillary condensation in a geometrically and a chemically heterogeneous pore: a molecular simulation study, J. Phys. Chem. B 109, 4700-4706. [CrossRef] [PubMed] [Google Scholar]
  • Puibasset J. (2005) Thermodynamic characterization of fluids confined in heterogeneous pores by Monte Carlo simulations in the grand canonical and the isobaric-isothermal ensembles, J. Phys. Chem. B 109, 8185-8194. [CrossRef] [PubMed] [Google Scholar]
  • Nicholson D., Parsonage N.G. (1982) Computer Simulation and the Statistical Mechanics of Adsorption, Academic Press, London. [Google Scholar]
  • Allen M.P., Tildesley D.J. (1987) Computer Simulation of Liquids, Clarendon Press, Oxford. [Google Scholar]
  • Brown A.J. (1963) PhD Thesis, University of Bristol. [Google Scholar]
  • Gelb L.D., Gubbins K.E., Radhakrishnan R., SliwinskaBartkowiak M. (1999) Phase separation in confined systems, Rep. Prog. Phys. 62, 1573-1659. [CrossRef] [Google Scholar]
  • Sarkisov L., Monson P.A. (2001) Modeling of adsorption and desorption in pores of simple geometry using molecular dynamics, Langmuir 17, 7600-7604. [CrossRef] [Google Scholar]
  • Page K.S., Monson P.A. (1996) Monte Carlo calculations of phase diagrams for a fluid confined in a disordered porous material, Phys. Rev. E 54, 6557-6564. [CrossRef] [Google Scholar]
  • Puibasset J., Pellenq R.J.-M. (2004) A grand canonical Monte Carlo simulation study of water adsorption on vycor-like hydrophilic mesoporous silica at different temperatures, J. Phys. Condens. Matter 16, S5329-S5343. [CrossRef] [Google Scholar]
  • Puibasset J., Pellenq R.J.-M. (2004) A comparison of water adsorption on ordered and disordered silica substrates, Phys. Chem. Chem. Phys. 6, 1933-1937. [CrossRef] [Google Scholar]
  • Puibasset J. (2006) Influence of surface chemical heterogeneities on adsorption/desorption hysteresis and coexistence diagram of metastable states within cylindrical pores, J. Chem. Phys. 125, 074707. [CrossRef] [PubMed] [Google Scholar]
  • Detcheverry F., Rosinberg M.L., Tarjus G. (2005) Metastable states and T = 0 hysteresis in the random-field Ising model on random graphs, Eur. Phys. J. B 44, 327-343. [CrossRef] [EDP Sciences] [OGST] [Google Scholar]
  • Pérez-Reche F.J., Rosinberg M.L., Tarjus G. (2008) Numerical approach to metastable states in the zero-temperature random- field Ising model, Phys. Rev. B 77, 064422. [CrossRef] [Google Scholar]
  • Rosinberg M.L., Tarjus G., Pérez-Reche F.J. (2009) The T = 0 random-field Ising model on a Bethe lattice with large coordination number: Hysteresis and metastable states, J. Stat. Mech. P03003. [Google Scholar]
  • Puibasset J. (2011) Numerical characterization of the density of metastable states within the hysteresis loop in disordered systems, J. Phys. Condens. Matter 23, 035106. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.